Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(30)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34285076

ABSTRACT

Grain boundary formation during coarsening of nanoporous gold (NPG) is investigated wherein a nanocrystalline structure can form by particles detaching and reattaching to the structure. MicroLaue and electron backscatter diffraction measurements demonstrate that an in-grain orientation spread develops as NPG is coarsened. The volume fraction of the NPG sample is near the limit of bicontinuity, at which simulations predict that a bicontinuous structure begins to fragment into independent particles during coarsening. Phase-field simulations of coarsening using a computationally generated structure with a volume fraction near the limit of bicontinuity are used to model particle detachment rates. This model is tested by using the measured NPG structure as an initial condition in the phase-field simulations. We predict that up to ∼5% of the NPG structure detaches as a dealloyed [Formula: see text] sample is annealed at 300 °C for 420 min. The quantity of volume detached is found to be highly dependent on the volume fraction and volume fraction homogeneity of the nanostructure. As the void phase in the experiments cannot support independent particles, they must fall and reattach to the structure, a process that results in the formation of new grain boundaries. This particle reattachment process, along with other classic processes, leads to the formation of grain boundaries during coarsening in nanoporous metals. The formation of grain boundaries can impact a variety of applications, including mechanical strengthening; thus, the consideration and understanding of particle detachment phenomena are essential when studying nanoporous metals.

2.
Sci Rep ; 8(1): 17940, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30560895

ABSTRACT

Two-phase mixtures, from metallic alloys to islands on surfaces, undergo coarsening wherein the total interfacial area of the system decreases with time. Theory predicts that during coarsening the average size-scale of a two-phase mixture increases with time as t1/3 when the two-phase mixture is self-similar, or time independent when scaled by a time-dependent length. Here, we explain why this temporal power law is so robustly observed even when the microstructure is not self-similar. We show that there exists an upper limit to the length scales in the system that are kinetically active during coarsening, which we term the self-similar length scale. Length scales smaller than the self-similar length scale evolve, leading to the classical temporal power law for the coarsening dynamics of the system. Longer length scales are largely inactive, leading to a non-self-similar structure. This result holds for any two-phase mixture with a large distribution of morphological length scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...