Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Life (Basel) ; 11(9)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34575137

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite that chronically infects a third of humans. It can cause life-threatening encephalitis in immune-compromised individuals. Congenital infection also results in blindness and intellectual disabilities. In the intracellular milieu, parasites encounter various immunological effectors that have been shaped to limit parasite infection. Parasites not only have to suppress these anti-parasitic inflammatory responses but also ensure the host organism's survival until their subsequent transmission. Recent advancements in T. gondii research have revealed a plethora of parasite-secreted proteins that suppress as well as activate immune responses. This mini-review will comprehensively examine each secreted immunomodulatory effector based on the location of their actions. The first section is focused on secreted effectors that localize to the parasitophorous vacuole membrane, the interface between the parasites and the host cytoplasm. Murine hosts are equipped with potent IFNγ-induced immune-related GTPases, and various parasite effectors subvert these to prevent parasite elimination. The second section examines several cytoplasmic and ER effectors, including a recently described function for matrix antigen 1 (MAG1) as a secreted effector. The third section covers the repertoire of nuclear effectors that hijack transcription factors and epigenetic repressors that alter gene expression. The last section focuses on the translocation of dense-granule effectors and effectors in the setting of T. gondii tissue cysts (the bradyzoite parasitophorous vacuole).

2.
West Indian Med J ; 50(2): 111-6, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11677906

ABSTRACT

Cytochrome c oxidase, the final member of the electron transport chain, is crucial to respiration and also contributes to the synthesis of cellular ATP. The total absence of this enzyme is incompatible with life and its deficiency or malfunction leads to a number of serious disease states. Understanding the mechanism of action of this enzyme, which is an important prerequisite to unravelling its role in the pathogenesis of disease states, is hampered by the lack of suitable enzyme models. The bovine enzyme, which is commonly used, is enormously complex and the bacterial enzymes, which are structurally simple, appear to follow a different mechanism of action. The hammer head shark is a seasonal resident of the warm waters of the Caribbean Sea. The work presented here indicates that, like the bovine enzyme, the enzyme of the heart of this shark (i) possesses thirteen subunits and two substrate binding sites and (ii) exhibits biphasic kinetics. The work also confirms that, unlike the bovine enzyme which is dimeric, the shark enzyme functions as a monomer. Given this latter simplifying feature, in conjunction with its kinetic and structural similarities to the more complex mammalian varieties, we propose that shark heart cytochrome c oxidase replace the bovine and bacterial forms as the enzyme of choice for model studies.


Subject(s)
Electron Transport Complex IV/physiology , Sharks , Animals , Cattle , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/pharmacology , Humans , Myocardium/enzymology
3.
West Indian med. j ; 50(2): 111-6, Jun. 2001. ilus, tab, gra
Article in English | MedCarib | ID: med-349

ABSTRACT

Cytochrome c oxidase, the final member of the electron transport chain, is crucial to respiration and also contributes to the synthesis of cellular ATP. The total absence of this enzyme is incompatible with life and its deficiency or malfunction leads to a number of serious disease states. Understanding the mechanism of action of this enzyme, which is an important prerequisite to unravelling its role in the pathogenesis of disease states, is hampered by the lack of suitable enzyme models. The bovine enzyme, which are structually simple, appear to follow a different mechanism of action. The hammer head shark is a seasonal resident of the warm waters of the Caribbean Sea. The work presented here indicates that, like the bovine enzyme, the enzyme of the heart of this shark (i) possesses thirteen subunits and two substrate binding sites and (ii) exhibits biphasic kinetics. The work also confirms that, unlike the bovine enzyme which is dimeric, the shark enzyme functions as a monomer. Given this latter simplifying feature, in conjunction with its kinetic and structural similarities to the more complex mammalian varieties, we propose that shark heart cytochrome c oxidase replace the bovine and bacterial forms as the enzyme of choice for model studies.(Au)


Subject(s)
21003 , Cattle , Comparative Study , Electron Transport Complex IV/physiology , Sharks , Disease Models, Animal , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/pharmacology , Myocarditis/enzymology
4.
West Indian med. j ; 50(2): 111-116, Jun. 2001.
Article in English | LILACS | ID: lil-333398

ABSTRACT

Cytochrome c oxidase, the final member of the electron transport chain, is crucial to respiration and also contributes to the synthesis of cellular ATP. The total absence of this enzyme is incompatible with life and its deficiency or malfunction leads to a number of serious disease states. Understanding the mechanism of action of this enzyme, which is an important prerequisite to unravelling its role in the pathogenesis of disease states, is hampered by the lack of suitable enzyme models. The bovine enzyme, which is commonly used, is enormously complex and the bacterial enzymes, which are structurally simple, appear to follow a different mechanism of action. The hammer head shark is a seasonal resident of the warm waters of the Caribbean Sea. The work presented here indicates that, like the bovine enzyme, the enzyme of the heart of this shark (i) possesses thirteen subunits and two substrate binding sites and (ii) exhibits biphasic kinetics. The work also confirms that, unlike the bovine enzyme which is dimeric, the shark enzyme functions as a monomer. Given this latter simplifying feature, in conjunction with its kinetic and structural similarities to the more complex mammalian varieties, we propose that shark heart cytochrome c oxidase replace the bovine and bacterial forms as the enzyme of choice for model studies.


Subject(s)
Animals , Cattle , Humans , Electron Transport Complex IV , Sharks , Electron Transport Complex IV , Myocardium
SELECTION OF CITATIONS
SEARCH DETAIL