Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(20): 202501, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38039485

ABSTRACT

The changes in mean-squared charge radii of neutron-deficient gold nuclei have been determined using the in-source, resonance-ionization laser spectroscopy technique, at the ISOLDE facility (CERN). From these new data, nuclear deformations are inferred, revealing a competition between deformed and spherical configurations. The isotopes ^{180,181,182}Au are observed to possess well-deformed ground states and, when moving to lighter masses, a sudden transition to near-spherical shapes is seen in the extremely neutron-deficient nuclides, ^{176,177,179}Au. A case of shape coexistence and shape staggering is identified in ^{178}Au which has a ground and isomeric state with different deformations. These new data reveal a pattern in ground-state deformation unique to the gold isotopes, whereby, when moving from the heavy to light masses, a plateau of well-deformed isotopes exists around the neutron midshell, flanked by near-spherical shapes in the heavier and lighter isotopes-a trend hitherto unseen elsewhere in the nuclear chart. The experimental charge radii are compared to those from Hartree-Fock-Bogoliubov calculations using the D1M Gogny interaction and configuration mixing between states of different deformation. The calculations are constrained by the known spins, parities, and magnetic moments of the ground states in gold nuclei and show a good agreement with the experimental results.

2.
Phys Rev Lett ; 131(2): 022501, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37505957

ABSTRACT

The ß decays from both the ground state and a long-lived isomer of ^{133}In were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to ß, γ, and neutron spectroscopy, the comparative partial half-lives (logft) have been measured for all their dominant ß-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their ß decays selectively populate only a few isolated neutron unbound states in ^{133}Sn. Precise energy and branching-ratio measurements of those resonances allow us to benchmark ß-decay theories at an unprecedented level in this region of the nuclear chart. The results show good agreement with the newly developed large-scale shell model (LSSM) calculations. The experimental findings establish an archetype for the ß decay of neutron-rich nuclei southeast of ^{132}Sn and will serve as a guide for future theoretical development aiming to describe accurately the key ß decays in the rapid-neutron capture (r-) process.

3.
Phys Rev Lett ; 130(13): 132502, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37067317

ABSTRACT

The new isotope ^{241}U was synthesized and systematic atomic mass measurements of nineteen neutron-rich Pa-Pu isotopes were performed in the multinucleon transfer reactions of the ^{238}U+^{198}Pt system at the KISS facility. The present experimental results demonstrate the crucial role of the multinucleon transfer reactions for accessing unexplored neutron-rich actinide isotopes toward the N=152 shell gap in this region of nuclides.

4.
Phys Rev Lett ; 127(20): 202501, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34860042

ABSTRACT

Two long-standing puzzles in the decay of ^{185}Bi, the heaviest known proton-emitting nucleus are revisited. These are the nonobservation of the 9/2^{-} state, which is the ground state of all heavier odd-A Bi isotopes, and the hindered nature of proton and α decays of its presumed 60-µs 1/2^{+} ground state. The ^{185}Bi nucleus has now been studied with the ^{95}Mo(^{93}Nb,3n) reaction in complementary experiments using the Fragment Mass Analyzer and Argonne Gas-Filled Analyzer at Argonne National Laboratory's ATLAS facility. The experiments have established the existence of two states in ^{185}Bi; the short-lived T_{1/2}=2.8_{-1.0}^{+2.3} µs, proton- and α-decaying ground state, and a 58(2)-µs γ-decaying isomer, the half-life of which was previously attributed to the ground state. The reassignment of the ground-state lifetime results in a proton-decay spectroscopic factor close to unity and represents the only known example of a ground-state proton decay to a daughter nucleus (^{184}Pb) with a major shell closure. The data also demonstrate that the ordering of low- and high-spin states in ^{185}Bi is reversed relative to the heavier odd-A Bi isotopes, with the intruder-based 1/2^{+} configuration becoming the ground, similar to the lightest At nuclides.

5.
Phys Rev Lett ; 127(19): 192501, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34797155

ABSTRACT

The changes in the mean-square charge radius (relative to ^{209}Bi), magnetic dipole, and electric quadrupole moments of ^{187,188,189,191}Bi were measured using the in-source resonance-ionization spectroscopy technique at ISOLDE (CERN). A large staggering in radii was found in ^{187,188,189}Bi^{g}, manifested by a sharp radius increase for the ground state of ^{188}Bi relative to the neighboring ^{187,189}Bi^{g}. A large isomer shift was also observed for ^{188}Bi^{m}. Both effects happen at the same neutron number, N=105, where the shape staggering and a similar isomer shift were observed in the mercury isotopes. Experimental results are reproduced by mean-field calculations where the ground or isomeric states were identified by the blocked quasiparticle configuration compatible with the observed spin, parity, and magnetic moment.

6.
Phys Rev Lett ; 126(13): 132502, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33861122

ABSTRACT

Isotopic distributions of fragments from fission of the neutron-deficient ^{178}Hg nuclide are reported. This experimental observable is obtained for the first time in the region around lead using an innovative approach based on inverse kinematics and the coincidence between the large acceptance magnetic spectrometer VAMOS++ and a new detection arm close to the target. The average fragment N/Z ratio and prompt neutron M_{n} multiplicity are derived and compared with current knowledge from actinide fission. A striking consistency emerges, revealing the unexpected dominant role of the proton subsystem with atomic number between the Z=28 and 50 magic numbers. The origin of nuclear charge polarization in fission and fragment deformation at scission are discussed.

7.
Phys Rev Lett ; 126(15): 152502, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33929212

ABSTRACT

A new α-emitting isotope ^{214}U, produced by the fusion-evaporation reaction ^{182}W(^{36}Ar,4n)^{214}U, was identified by employing the gas-filled recoil separator SHANS and the recoil-α correlation technique. More precise α-decay properties of even-even nuclei ^{216,218}U were also measured in the reactions of ^{40}Ar, ^{40}Ca beams with ^{180,182,184}W targets. By combining the experimental data, improved α-decay reduced widths δ^{2} for the even-even Po-Pu nuclei in the vicinity of the magic neutron number N=126 are deduced. Their systematic trends are discussed in terms of the N_{p}N_{n} scheme in order to study the influence of proton-neutron interaction on α decay in this region of nuclei. It is strikingly found that the reduced widths of ^{214,216}U are significantly enhanced by a factor of two as compared with the N_{p}N_{n} systematics for the 84≤Z≤90 and N<126 even-even nuclei. The abnormal enhancement is interpreted by the strong monopole interaction between the valence protons and neutrons occupying the π1f_{7/2} and ν1f_{5/2} spin-orbit partner orbits, which is supported by the large-scale shell model calculation.

8.
Phys Rev Lett ; 126(3): 032502, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33543945

ABSTRACT

The mean-square charge radii of ^{207,208}Hg (Z=80, N=127, 128) have been studied for the first time and those of ^{202,203,206}Hg (N=122, 123, 126) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic kink in the charge radii at the N=126 neutron shell closure has been revealed, providing the first information on its behavior below the Z=82 proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and nonrelativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is demonstrated that both the kink at N=126 and the odd-even staggering (OES) in its vicinity can be described predominately at the mean-field level and that pairing does not need to play a crucial role in their origin. A new OES mechanism is suggested, related to the staggering in the occupation of the different neutron orbitals in odd- and even-A nuclei, facilitated by particle-vibration coupling for odd-A nuclei.

9.
Phys Rev Lett ; 125(19): 192501, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33216605

ABSTRACT

The ß decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{ß} window, only three negative parity states are populated directly in the ß decay. The data provide a unique test of the competition between allowed Gamow-Teller and Fermi, and first-forbidden ß decays, essential for the understanding of the nucleosynthesis of heavy nuclei in the rapid neutron capture process. Furthermore, the observation of the parity changing 0^{+}→0^{-}ß decay where the daughter state is core excited is unique, and can provide information on mesonic corrections of effective operators.

10.
Phys Rev Lett ; 121(14): 142701, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30339438

ABSTRACT

The ^{12}C(α,γ)^{16}O reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced α width, γ_{11}, of the bound 1^{-} level in ^{16}O is particularly important to determine the cross section. The magnitude of γ_{11} is determined via sub-Coulomb α-transfer reactions or the ß-delayed α decay of ^{16}N, but the latter approach is presently hampered by the lack of sufficiently precise data on the ß-decay branching ratios. Here we report improved branching ratios for the bound 1^{-} level [b_{ß,11}=(5.02±0.10)×10^{-2}] and for ß-delayed α emission [b_{ßα}=(1.59±0.06)×10^{-5}]. Our value for b_{ßα} is 33% larger than previously held, leading to a substantial increase in γ_{11}. Our revised value for γ_{11} is in good agreement with the value obtained in α-transfer studies and the weighted average of the two gives a robust and precise determination of γ_{11}, which provides significantly improved constraints on the ^{12}C(α,γ) cross section in the energy range relevant to hydrostatic He burning.

11.
Rep Prog Phys ; 81(1): 016301, 2018 01.
Article in English | MEDLINE | ID: mdl-28753131

ABSTRACT

In the last two decades, through technological, experimental and theoretical advances, the situation in experimental fission studies has changed dramatically. With the use of advanced production and detection techniques both much more detailed and precise information can now be obtained for the traditional regions of fission research and, crucially, new regions of nuclei have become routinely accessible for fission studies. This work first of all reviews the recent developments in experimental fission techniques, in particular the resurgence of transfer-induced fission reactions with light and heavy ions, the emerging use of inverse-kinematic approaches, both at Coulomb and relativistic energies, and of fission studies with radioactive beams. The emphasis on the fission-fragment mass and charge distributions will be made in this work, though some of the other fission observables, such as prompt neutron and γ-ray emission will also be reviewed. A particular attention will be given to the low-energy fission in the so far scarcely explored nuclei in the very neutron-deficient lead region. They recently became the focus for several complementary experimental studies, such as ß-delayed fission with radioactive beams at ISOLDE(CERN), Coulex-induced fission of relativistic secondary beams at FRS(GSI), and several prompt fusion-fission studies. The synergy of these approaches allows a unique insight in the new region of asymmetric fission around [Formula: see text]Hg, recently discovered at ISOLDE. Recent extensive theoretical efforts in this region will also be outlined. The unprecedented high-quality data for fission fragments, completely identified in Z and A, by means of reactions in inverse kinematics at FRS(GSI) and VAMOS(GANIL) will be also reviewed. These experiments explored an extended range of mercury-to-californium elements, spanning from the neutron-deficient to neutron-rich nuclides, and covering both asymmetric, symmetric and transitional fission regions. Some aspects of heavy-ion induced fusion-fission and quasifission reactions will be also discussed, which reveal their dynamical features, such as the fission time scale. The crucial role of the multi-chance fission, probed by means of multinucleon-transfer induced fission reactions, will be highlighted. The review will conclude with the discussion of the new experimental fission facilities which are presently being brought into operation, along with promising 'next-generation' fission approaches, which might become available within the next decade.

12.
Phys Rev Lett ; 119(22): 222501, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29286806

ABSTRACT

Fission-fragment mass distributions were measured for ^{237-240}U, ^{239-242}Np, and ^{241-244}Pu populated in the excitation-energy range from 10 to 60 MeV by multinucleon transfer channels in the reaction ^{18}O+^{238}U at the Japan Atomic Energy Agency tandem facility. Among them, the data for ^{240}U and ^{240,241,242}Np were observed for the first time. It was found that the mass distributions for all the studied nuclides maintain a double-humped shape up to the highest measured energy in contrast to expectations of predominantly symmetric fission due to the washing out of nuclear shell effects. From a comparison with the dynamical calculation based on the fluctuation-dissipation model, this behavior of the mass distributions was unambiguously attributed to the effect of multichance fission.

13.
Nat Commun ; 4: 1835, 2013.
Article in English | MEDLINE | ID: mdl-23673620

ABSTRACT

The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine.

14.
Phys Rev Lett ; 110(24): 242502, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-25165917

ABSTRACT

In recent experiments at the velocity filter Separator for Heavy Ion reaction Products (SHIP) (GSI, Darmstadt), an extended and improved set of α-decay data for more than 20 of the most neutron-deficient isotopes in the region from lead to thorium was obtained. The combined analysis of this newly available α-decay data, of which the (186)Po decay is reported here, allowed us for the first time to clearly show that crossing the Z = 82 shell to higher proton numbers strongly accelerates the α decay. From the experimental data, the α-particle formation probabilities are deduced following the Universal Decay Law approach. The formation probabilities are discussed in the framework of the pairing force acting among the protons and the neutrons forming the α particle. A striking resemblance between the phenomenological pairing gap deduced from experimental binding energies and the formation probabilities is noted. These findings support the conjecture that both the N = 126 and Z = 82 shell closures strongly influence the α-formation probability.


Subject(s)
Alpha Particles , Polonium/chemistry , Neutrons , Nuclear Physics
15.
Phys Rev Lett ; 106(5): 052503, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21405388

ABSTRACT

In-source resonant ionization laser spectroscopy of the even-A polonium isotopes (192-210,216,218)Po has been performed using the 6p(3)7s (5)S(2) to 6p(3)7p (5)P(2) (λ=843.38 nm) transition in the polonium atom (Po-I) at the CERN ISOLDE facility. The comparison of the measured isotope shifts in (200-210)Po with a previous data set allows us to test for the first time recent large-scale atomic calculations that are essential to extract the changes in the mean-square charge radius of the atomic nucleus. When going to lighter masses, a surprisingly large and early departure from sphericity is observed, which is only partly reproduced by beyond mean field calculations.

16.
Phys Rev Lett ; 105(25): 252502, 2010 Dec 17.
Article in English | MEDLINE | ID: mdl-21231583

ABSTRACT

A very exotic process of ß-delayed fission of 180Tl is studied in detail by using resonant laser ionization with subsequent mass separation at ISOLDE (CERN). In contrast to common expectations, the fission-fragment mass distribution of the post-ß-decay daughter nucleus 180Hg (N/Z=1.25) is asymmetric. This asymmetry is more surprising since a mass-symmetric split of this extremely neutron-deficient nucleus would lead to two 90Zr fragments, with magic N=50 and semimagic Z=40. This is a new type of asymmetric fission, not caused by large shell effects related to fragment magic proton and neutron numbers, as observed in the actinide region. The newly measured branching ratio for ß-delayed fission of 180Tl is 3.6(7) × 10(-3)%, approximately 2 orders of magnitude larger than in an earlier study.

17.
Phys Rev Lett ; 103(10): 102501, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19792298

ABSTRACT

For the first time, in-gas-cell laser spectroscopy study of the (57,59,63,65)Cu isotopes has been performed using the 244.164 nm optical transition from the atomic ground state of copper. The nuclear magnetic dipole moments for (57,59,65)Cu relative to that of (63)Cu have been extracted. The new value for (57)Cu of mu((57)Cu) = +2.582(7)mu(N) is in strong disagreement with the previous literature value but in good agreement with recent theoretical and systematic predictions.

18.
Phys Rev Lett ; 98(11): 112502, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17501046

ABSTRACT

The shape of exotic even-mass (182-190)Pb isotopes was probed by measurement of optical isotope shifts providing mean square charge radii (delta(r(2))). The experiment was carried out at the isolde (cern) on-line mass separator, using in-source laser spectroscopy. Small deviations from the spherical droplet model are observed, but when compared to model calculations, those are explained by high sensitivity of delta(r(2)) to beyond mean-field correlations and small admixtures of intruder configurations in the ground state. The data support the predominantly spherical shape of the ground state of the proton-magic Z=82 lead isotopes near neutron midshell (N=104).

19.
Probl Endokrinol (Mosk) ; 53(1): 36-40, 2007 Feb 15.
Article in Russian | MEDLINE | ID: mdl-31627630

ABSTRACT

The purpose of the study was to estimate the incidence of thyroid dysfunction and cardiovascular diseases in perimenopausal females. The cross-sectional study covered 554 females (mean age 52.6±6.1 years). The levels of thyroid-stimulating hormone (TSH), total cholesterol (TC), high-density lipoproteins (HDL), low-density lipoproteins (LDL), and very low-density lipoproteins (VLDL), the incidence of arterial hypertension (AH), coronary heart disease, chronic heart failure, myocardial infarction, cerebral circulatory disorders, and the severity of menopausal syndrome (MS) were determined. The study detected euthyroldism in 381 (68.8%) patients, hypothyroidism in 168 (30.3%), out of them 35 (20.8%) patients having primary hypothyroidism, and hyperthyroidism in 5 (0.9%) females. Out of the 133 patients receiving L-thyroxine therapy, hypothyroidism was compensated. In 78(58.7%) cases, the dose of L-thyroxine was inadequate. The level of LDL was significantly higher in hypothyroidism; the median of TC was higher than the normal levels in both groups. There were no differences in the incidence of vascular disease between the groups. In both groups, AH was encountered In more than 60% of cases. The females with hypothyroidism had a more severe course of MS. With the adequate dose of L-thyroxine, the level of HDL was significantly higher and that of triglycerides and VLDL was lower than in hypothyroidism. It is expedient to include the measurement of TSH levels into the algorithm of examination of patients with severe MS.

SELECTION OF CITATIONS
SEARCH DETAIL
...