Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Nat Cancer ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741011

ABSTRACT

Cancer immunotherapy with chimeric antigen receptor (CAR) T cells can cause immune effector cell-associated neurotoxicity syndrome (ICANS). However, the molecular mechanisms leading to ICANS are not well understood. Here we examined the role of microglia using mouse models and cohorts of individuals with ICANS. CD19-directed CAR (CAR19) T cell transfer in B cell lymphoma-bearing mice caused microglia activation and neurocognitive deficits. The TGFß-activated kinase-1 (TAK1)-NF-κB-p38 MAPK pathway was activated in microglia after CAR19 T cell transfer. Pharmacological TAK1 inhibition or genetic Tak1 deletion in microglia using Cx3cr1CreER:Tak1fl/fl mice resulted in reduced microglia activation and improved neurocognitive activity. TAK1 inhibition allowed for potent CAR19-induced antilymphoma effects. Individuals with ICANS exhibited microglia activation in vivo when studied by translocator protein positron emission tomography, and imaging mass cytometry revealed a shift from resting to activated microglia. In summary, we prove a role for microglia in ICANS pathophysiology, identify the TAK1-NF-κB-p38 MAPK axis as a pathogenic signaling pathway and provide a rationale to test TAK1 inhibition in a clinical trial for ICANS prevention after CAR19 T cell-based cancer immunotherapy.

2.
Mol Ther ; 32(5): 1298-1310, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38459694

ABSTRACT

Undesired on- and off-target effects of CRISPR-Cas nucleases remain a challenge in genome editing. While the use of Cas9 nickases has been shown to minimize off-target mutagenesis, their use in therapeutic genome editing has been hampered by a lack of efficacy. To overcome this limitation, we and others have developed double-nickase-based strategies to generate staggered DNA double-strand breaks to mediate gene disruption or gene correction with high efficiency. However, the impact of paired single-strand nicks on genome integrity has remained largely unexplored. Here, we developed a novel CAST-seq pipeline, dual CAST, to characterize chromosomal aberrations induced by paired CRISPR-Cas9 nickases at three different loci in primary keratinocytes derived from patients with epidermolysis bullosa. While targeting COL7A1, COL17A1, or LAMA3 with Cas9 nucleases caused previously undescribed chromosomal rearrangements, no chromosomal translocations were detected following paired-nickase editing. While the double-nicking strategy induced large deletions/inversions within a 10 kb region surrounding the target sites at all three loci, similar to the nucleases, the chromosomal on-target aberrations were qualitatively different and included a high proportion of insertions. Taken together, our data indicate that double-nickase approaches combine efficient editing with greatly reduced off-target effects but still leave substantial chromosomal aberrations at on-target sites.


Subject(s)
CRISPR-Cas Systems , Deoxyribonuclease I , Gene Editing , Keratinocytes , Humans , Gene Editing/methods , Deoxyribonuclease I/metabolism , Deoxyribonuclease I/genetics , Keratinocytes/metabolism , DNA Breaks, Double-Stranded , Chromosome Aberrations , Collagen Type VII/genetics , Collagen Type VII/metabolism , Cells, Cultured
3.
Sci Transl Med ; 16(735): eadi1501, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381845

ABSTRACT

Acute graft-versus-host disease (aGVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT), for which therapeutic options are limited. Strategies to promote intestinal tissue tolerance during aGVHD may improve patient outcomes. Using single-cell RNA sequencing, we identified a lipocalin-2 (LCN2)-expressing neutrophil population in mice with intestinal aGVHD. Transfer of LCN2-overexpressing neutrophils or treatment with recombinant LCN2 reduced aGVHD severity, whereas the lack of epithelial or hematopoietic LCN2 enhanced aGVHD severity and caused microbiome alterations. Mechanistically, LCN2 induced insulin-like growth factor 1 receptor (IGF-1R) signaling in macrophages through the LCN2 receptor SLC22A17, which increased interleukin-10 (IL-10) production and reduced major histocompatibility complex class II (MHCII) expression. Transfer of LCN2-pretreated macrophages reduced aGVHD severity but did not reduce graft-versus-leukemia effects. Furthermore, LCN2 expression correlated with IL-10 expression in intestinal biopsies in multiple cohorts of patients with aGVHD, and LCN2 induced IGF-1R signaling in human macrophages. Collectively, we identified a LCN2-expressing intestinal neutrophil population that reduced aGVHD severity by decreasing MHCII expression and increasing IL-10 production in macrophages. This work provides the foundation for administration of LCN2 as a therapeutic approach for aGVHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Animals , Mice , Neutrophils/pathology , Interleukin-10 , Lipocalin-2/genetics , Graft vs Host Disease/genetics , Macrophages/pathology , Acute Disease
4.
Nat Commun ; 15(1): 446, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38199985

ABSTRACT

Patients with corticosteroid-refractory acute graft-versus-host disease (aGVHD) have a low one-year survival rate. Identification and validation of novel targetable kinases in patients who experience corticosteroid-refractory-aGVHD may help improve outcomes. Kinase-specific proteomics of leukocytes from patients with corticosteroid-refractory-GVHD identified rho kinase type 1 (ROCK1) as the most significantly upregulated kinase. ROCK1/2 inhibition improved survival and histological GVHD severity in mice and was synergistic with JAK1/2 inhibition, without compromising graft-versus-leukemia-effects. ROCK1/2-inhibition in macrophages or dendritic cells prior to transfer reduced GVHD severity. Mechanistically, ROCK1/2 inhibition or ROCK1 knockdown interfered with CD80, CD86, MHC-II expression and IL-6, IL-1ß, iNOS and TNF production in myeloid cells. This was accompanied by impaired T cell activation by dendritic cells and inhibition of cytoskeletal rearrangements, thereby reducing macrophage and DC migration. NF-κB signaling was reduced in myeloid cells following ROCK1/2 inhibition. In conclusion, ROCK1/2 inhibition interferes with immune activation at multiple levels and reduces acute GVHD while maintaining GVL-effects, including in corticosteroid-refractory settings.


Subject(s)
Graft vs Host Disease , rho-Associated Kinases , Humans , Animals , Mice , rho-Associated Kinases/genetics , Graft vs Host Disease/drug therapy , Signal Transduction , NF-kappa B , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use
5.
EMBO Mol Med ; 16(1): 112-131, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38182795

ABSTRACT

The therapeutic use of adeno-associated viral vector (AAV)-mediated gene disruption using CRISPR-Cas9 is limited by potential off-target modifications and the risk of uncontrolled integration of vector genomes into CRISPR-mediated double-strand breaks. To address these concerns, we explored the use of AAV-delivered paired Staphylococcus aureus nickases (D10ASaCas9) to target the Hao1 gene for the treatment of primary hyperoxaluria type 1 (PH1). Our study demonstrated effective Hao1 gene disruption, a significant decrease in glycolate oxidase expression, and a therapeutic effect in PH1 mice. The assessment of undesired genetic modifications through CIRCLE-seq and CAST-Seq analyses revealed neither off-target activity nor chromosomal translocations. Importantly, the use of paired-D10ASaCas9 resulted in a significant reduction in AAV integration at the target site compared to SaCas9 nuclease. In addition, our study highlights the limitations of current analytical tools in characterizing modifications introduced by paired D10ASaCas9, necessitating the development of a custom pipeline for more accurate characterization. These results describe a positive advance towards a safe and effective potential long-term treatment for PH1 patients.


Subject(s)
CRISPR-Cas Systems , Hyperoxaluria, Primary , Humans , Animals , Mice , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Gene Editing , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/therapy
6.
Sci Immunol ; 9(91): eadj5948, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38215192

ABSTRACT

Defective FAS (CD95/Apo-1/TNFRSF6) signaling causes autoimmune lymphoproliferative syndrome (ALPS). Hypergammaglobulinemia is a common feature in ALPS with FAS mutations (ALPS-FAS), but paradoxically, fewer conventional memory cells differentiate from FAS-expressing germinal center (GC) B cells. Resistance to FAS-induced apoptosis does not explain this phenotype. We tested the hypothesis that defective non-apoptotic FAS signaling may contribute to impaired B cell differentiation in ALPS. We analyzed secondary lymphoid organs of patients with ALPS-FAS and found low numbers of memory B cells, fewer GC B cells, and an expanded extrafollicular (EF) B cell response. Enhanced mTOR activity has been shown to favor EF versus GC fate decision, and we found enhanced PI3K/mTOR and BCR signaling in ALPS-FAS splenic B cells. Modeling initial T-dependent B cell activation with CD40L in vitro, we showed that FAS competent cells with transient FAS ligation showed specifically decreased mTOR axis activation without apoptosis. Mechanistically, transient FAS engagement with involvement of caspase-8 induced nuclear exclusion of PTEN, leading to mTOR inhibition. In addition, FASL-dependent PTEN nuclear exclusion and mTOR modulation were defective in patients with ALPS-FAS. In the early phase of activation, FAS stimulation promoted expression of genes related to GC initiation at the expense of processes related to the EF response. Hence, our data suggest that non-apoptotic FAS signaling acts as molecular switch between EF versus GC fate decisions via regulation of the mTOR axis and transcription. The defect of this modulatory circuit may explain the observed hypergammaglobulinemia and low memory B cell numbers in ALPS.


Subject(s)
Hypergammaglobulinemia , Lymphoproliferative Disorders , Humans , Apoptosis/genetics , Germinal Center , Lymphoproliferative Disorders/genetics , TOR Serine-Threonine Kinases
7.
Cell Death Dis ; 15(1): 77, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245534

ABSTRACT

Plasma membrane accumulation of phosphorylated mixed lineage kinase domain-like (MLKL) is a hallmark of necroptosis, leading to membrane rupture and inflammatory cell death. Pro-death functions of MLKL are tightly controlled by several checkpoints, including phosphorylation. Endo- and exocytosis limit MLKL membrane accumulation and counteract necroptosis, but the exact mechanisms remain poorly understood. Here, we identify linear ubiquitin chain assembly complex (LUBAC)-mediated M1 poly-ubiquitination (poly-Ub) as novel checkpoint for necroptosis regulation downstream of activated MLKL in cells of human origin. Loss of LUBAC activity inhibits tumor necrosis factor α (TNFα)-mediated necroptosis, not by affecting necroptotic signaling, but by preventing membrane accumulation of activated MLKL. Finally, we confirm LUBAC-dependent activation of necroptosis in primary human pancreatic organoids. Our findings identify LUBAC as novel regulator of necroptosis which promotes MLKL membrane accumulation in human cells and pioneer primary human organoids to model necroptosis in near-physiological settings.


Subject(s)
Necroptosis , Protein Kinases , Humans , Necrosis/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Phosphorylation , Cell Death , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Apoptosis/physiology
8.
Leukemia ; 38(1): 136-148, 2024 01.
Article in English | MEDLINE | ID: mdl-37945692

ABSTRACT

Juvenile myelomonocytic leukemia (JMML) is an aggressive hematopoietic disorder of infancy and early childhood driven by constitutively active RAS signaling and characterized by abnormal proliferation of the granulocytic-monocytic blood cell lineage. Most JMML patients require hematopoietic stem cell transplantation for cure, but the risk of relapse is high for some JMML subtypes. Azacitidine was shown to effectively reduce leukemic burden in a subset of JMML patients. However, variable response rates to azacitidine and the risk of drug resistance highlight the need for novel therapeutic approaches. Since RAS signaling is known to interfere with the intrinsic apoptosis pathway, we combined various BH3 mimetic drugs with azacitidine in our previously established patient-derived xenograft model. We demonstrate that JMML cells require both MCL-1 and BCL-XL for survival, and that these proteins can be effectively targeted by azacitidine and BH3 mimetic combination treatment. In vivo azacitidine acts via downregulation of antiapoptotic MCL-1 and upregulation of proapoptotic BH3-only. The combination of azacitidine with BCL-XL inhibition was superior to BCL-2 inhibition in eliminating JMML cells. Our findings emphasize the need to develop clinically applicable MCL-1 or BCL-XL inhibitors in order to enable novel combination therapies in JMML refractory to standard therapy.


Subject(s)
Azacitidine , Leukemia, Myelomonocytic, Juvenile , Humans , Child, Preschool , Azacitidine/pharmacology , Azacitidine/therapeutic use , Leukemia, Myelomonocytic, Juvenile/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , bcl-X Protein/metabolism , Apoptosis , Cell Line, Tumor
9.
J Allergy Clin Immunol ; 153(1): 243-255.e14, 2024 01.
Article in English | MEDLINE | ID: mdl-37595758

ABSTRACT

BACKGROUND: Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disorder characterized by a life-threatening cytokine storm and immunopathology. Familial HLH type 3 (FHL3) accounts for approximately 30% of all inborn HLH cases worldwide. It is caused by mutations in the UNC13D gene that result in impaired degranulation of cytotoxic vesicles and hence compromised T-cell- and natural killer-cell-mediated killing. Current treatment protocols, including allogeneic hematopoietic stem cell (HSC) transplantation, still show high mortality. OBJECTIVE: We sought to develop and evaluate a curative genome editing strategy in the preclinical FHL3 Jinx mouse model. Jinx mice harbor a cryptic splice donor site in Unc13d intron 26 and develop clinical symptoms of human FHL3 upon infection with lymphocytic choriomeningitis virus (LCMV). METHODS: We employed clustered regularly interspaced short palindromic repeats (CRISPR)-Cas technology to delete the disease-causing mutation in HSCs and transplanted Unc13d-edited stem cells into busulfan-conditioned Jinx recipient mice. Safety studies included extensive genotyping and chromosomal aberrations analysis by single targeted linker-mediated PCR sequencing (CAST-Seq)-based off-target analyses. Cure from HLH predisposition was assessed by LCMV infection. RESULTS: Hematopoietic cells isolated from transplanted mice revealed efficient gene editing (>95%), polyclonality of the T-cell receptor repertoire, and neither signs of off-target effects nor leukemogenesis. Unc13d transcription levels of edited and wild-type cells were comparable. While LCMV challenge resulted in acute HLH in Jinx mice transplanted with mock-edited HSCs, Jinx mice grafted with Unc13d-edited cells showed rapid virus clearance and protection from HLH. CONCLUSIONS: Our study demonstrates that transplantation of CRISPR-Cas edited HSCs supports the development of a functional polyclonal T-cell response in the absence of genotoxicity-associated clonal outgrowth.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Humans , Mice , Animals , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/therapy , Lymphohistiocytosis, Hemophagocytic/diagnosis , T-Lymphocytes , Gene Editing , Mutation , Lymphocytic choriomeningitis virus , Hematopoietic Stem Cells , Membrane Proteins/genetics
10.
Br J Haematol ; 204(2): 595-605, 2024 02.
Article in English | MEDLINE | ID: mdl-37945316

ABSTRACT

Juvenile myelomonocytic leukaemia (JMML) is characterized by gene variants that deregulate the RAS signalling pathway. Children with neurofibromatosis type 1 (NF-1) carry a defective NF1 allele in the germline and are predisposed to JMML, which presumably requires somatic inactivation of the NF1 wild-type allele. Here we examined the two-hit concept in leukaemic cells of 25 patients with JMML and NF-1. Ten patients with JMML/NF-1 exhibited a NF1 loss-of-function variant in combination with uniparental disomy of the 17q arm. Five had NF1 microdeletions combined with a pathogenic NF1 variant and nine carried two compound-heterozygous NF1 variants. We also examined 16 patients without clinical signs of NF-1 and no variation in the JMML-associated driver genes PTPN11, KRAS, NRAS or CBL (JMML-5neg) and identified eight patients with NF1 variants. Three patients had microdeletions combined with hemizygous NF1 variants, three had compound-heterozygous NF1 variants and two had heterozygous NF1 variants. In addition, we found a high incidence of secondary ASXL1 and/or SETBP1 variants in both groups. We conclude that the clinical diagnosis of JMML/NF-1 reliably indicates a NF1-driven JMML subtype, and that careful NF1 analysis should be included in the genetic workup of JMML even in the absence of clinical evidence of NF-1.


Subject(s)
Leukemia, Myelomonocytic, Juvenile , Neurofibromatosis 1 , Child , Humans , Leukemia, Myelomonocytic, Juvenile/genetics , Neurofibromatosis 1/genetics , Mutation , Signal Transduction , Genes, Tumor Suppressor
11.
Cells ; 12(21)2023 11 06.
Article in English | MEDLINE | ID: mdl-37947658

ABSTRACT

While chimeric antigen receptor (CAR) T cell therapy has shown promising outcomes among patients with hematologic malignancies, it has also been associated with undesirable side-effects such as cytokine release syndrome (CRS). CRS is triggered by CAR T-cell-based activation of monocytes, which are stimulated via the CD40L-CD40R axis or via uptake of GM-CSF to secrete proinflammatory cytokines. Mouse models have been used to model CRS, but working with them is labor-intensive and they are not amenable to screening approaches. To overcome this challenge, we established two simple cell-based CRS in vitro models that entail the co-culturing of leukemic B cells with CD19-targeting CAR T cells and primary monocytes from the same donor. Upon antigen encounter, CAR T cells upregulated CD40L and released GM-CSF which in turn stimulated the monocytes to secrete IL-6. To endorse these models, we demonstrated that neutralizing antibodies or genetic disruption of the CD40L and/or CSF2 loci in CAR T cells using CRISPR-Cas technology significantly reduced IL-6 secretion by bystander monocytes without affecting the cytolytic activity of the engineered lymphocytes in vitro. Overall, our cell-based models were able to recapitulate CRS in vitro, allowing us to validate mitigation strategies based on antibodies or genome editing.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Receptors, Chimeric Antigen , Humans , Animals , Mice , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Chimeric Antigen/genetics , CD40 Ligand , Cytokine Release Syndrome , Interleukin-6 , Mice, Knockout , T-Lymphocytes
12.
Nat Immunol ; 24(12): 2135-2149, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37932456

ABSTRACT

Current US Food and Drug Administration-approved chimeric antigen receptor (CAR) T cells harbor the T cell receptor (TCR)-derived ζ chain as an intracellular activation domain in addition to costimulatory domains. The functionality in a CAR format of the other chains of the TCR complex, namely CD3δ, CD3ε and CD3γ, instead of ζ, remains unknown. In the present study, we have systematically engineered new CD3 CARs, each containing only one of the CD3 intracellular domains. We found that CARs containing CD3δ, CD3ε or CD3γ cytoplasmic tails outperformed the conventional ζ CAR T cells in vivo. Transcriptomic and proteomic analysis revealed differences in activation potential, metabolism and stimulation-induced T cell dysfunctionality that mechanistically explain the enhanced anti-tumor performance. Furthermore, dimerization of the CARs improved their overall functionality. Using these CARs as minimalistic and synthetic surrogate TCRs, we have identified the phosphatase SHP-1 as a new interaction partner of CD3δ that binds the CD3δ-ITAM on phosphorylation of its C-terminal tyrosine. SHP-1 attenuates and restrains activation signals and might thus prevent exhaustion and dysfunction. These new insights into T cell activation could promote the rational redesign of synthetic antigen receptors to improve cancer immunotherapy.


Subject(s)
Proteomics , Receptors, Antigen, T-Cell , CD3 Complex , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Cell Membrane/metabolism , Lymphocyte Activation , T-Lymphocytes
13.
J Exp Med ; 220(12)2023 12 04.
Article in English | MEDLINE | ID: mdl-37773046

ABSTRACT

Targeted eradication of transformed or otherwise dysregulated cells using monoclonal antibodies (mAb), antibody-drug conjugates (ADC), T cell engagers (TCE), or chimeric antigen receptor (CAR) cells is very effective for hematologic diseases. Unlike the breakthrough progress achieved for B cell malignancies, there is a pressing need to find suitable antigens for myeloid malignancies. CD123, the interleukin-3 (IL-3) receptor alpha-chain, is highly expressed in various hematological malignancies, including acute myeloid leukemia (AML). However, shared CD123 expression on healthy hematopoietic stem and progenitor cells (HSPCs) bears the risk for myelotoxicity. We demonstrate that epitope-engineered HSPCs were shielded from CD123-targeted immunotherapy but remained functional, while CD123-deficient HSPCs displayed a competitive disadvantage. Transplantation of genome-edited HSPCs could enable tumor-selective targeted immunotherapy while rebuilding a fully functional hematopoietic system. We envision that this approach is broadly applicable to other targets and cells, could render hitherto undruggable targets accessible to immunotherapy, and will allow continued posttransplant therapy, for instance, to treat minimal residual disease (MRD).


Subject(s)
Interleukin-3 Receptor alpha Subunit , Leukemia, Myeloid, Acute , Humans , Interleukin-3 Receptor alpha Subunit/metabolism , Epitopes , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Immunotherapy , Hematopoietic Stem Cells/metabolism , Immunotherapy, Adoptive
14.
Br J Haematol ; 203(2): 264-281, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37539479

ABSTRACT

Acute myeloid leukaemia (AML) relapse after allogeneic haematopoietic cell transplantation (allo-HCT) is often driven by immune-related mechanisms and associated with poor prognosis. Immune checkpoint inhibitors combined with hypomethylating agents (HMA) may restore or enhance the graft-versus-leukaemia effect. Still, data about using this combination regimen after allo-HCT are limited. We conducted a prospective, phase II, open-label, single-arm study in which we treated patients with haematological AML relapse after allo-HCT with HMA plus the anti-PD-1 antibody nivolumab. The response was correlated with DNA-, RNA- and protein-based single-cell technology assessments to identify biomarkers associated with therapeutic efficacy. Sixteen patients received a median number of 2 (range 1-7) nivolumab applications. The overall response rate (CR/PR) at day 42 was 25%, and another 25% of the patients achieved stable disease. The median overall survival was 15.6 months. High-parametric cytometry documented a higher frequency of activated (ICOS+ , HLA-DR+ ), low senescence (KLRG1- , CD57- ) CD8+ effector T cells in responders. We confirmed these findings in a preclinical model. Single-cell transcriptomics revealed a pro-inflammatory rewiring of the expression profile of T and myeloid cells in responders. In summary, the study indicates that the post-allo-HCT HMA/nivolumab combination induces anti-AML immune responses in selected patients and could be considered as a bridging approach to a second allo-HCT. Trial-registration: EudraCT-No. 2017-002194-18.

15.
Cancers (Basel) ; 15(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37444566

ABSTRACT

(1) Background: Next-generation sequencing (NGS) of patients with advanced tumors is becoming an established method in Molecular Tumor Boards. However, somatic variant detection, interpretation, and report generation, require in-depth knowledge of both bioinformatics and oncology. (2) Methods: MIRACUM-Pipe combines many individual tools into a seamless workflow for comprehensive analyses and annotation of NGS data including quality control, alignment, variant calling, copy number variation estimation, evaluation of complex biomarkers, and RNA fusion detection. (3) Results: MIRACUM-Pipe offers an easy-to-use, one-prompt standardized solution to analyze NGS data, including quality control, variant calling, copy number estimation, annotation, visualization, and report generation. (4) Conclusions: MIRACUM-Pipe, a versatile pipeline for NGS, can be customized according to bioinformatics and clinical needs and to support clinical decision-making with visual processing and interactive reporting.

16.
Genome Med ; 15(1): 48, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37434262

ABSTRACT

BACKGROUND: Spatiotemporal heterogeneity originating from genomic and transcriptional variation was found to contribute to subtype switching in isocitrate dehydrogenase-1 wild-type glioblastoma (GBM) prior to and upon recurrence. Fluorescence-guided neurosurgical resection utilizing 5-aminolevulinic acid (5ALA) enables intraoperative visualization of infiltrative tumors outside the magnetic resonance imaging contrast-enhanced regions. The cell population and functional status of tumor responsible for enhancing 5ALA-metabolism to fluorescence-active PpIX remain elusive. The close spatial proximity of 5ALA-metabolizing (5ALA +) cells to residual disease remaining post-surgery renders 5ALA + biology an early a priori proxy of GBM recurrence, which is poorly understood. METHODS: We performed spatially resolved bulk RNA profiling (SPRP) analysis of unsorted Core, Rim, Invasive margin tissue, and FACS-isolated 5ALA + /5ALA - cells from the invasive margin across IDH-wt GBM patients (N = 10) coupled with histological, radiographic, and two-photon excitation fluorescence microscopic analyses. Deconvolution of SPRP followed by functional analyses was performed using CIBEROSRTx and UCell enrichment algorithms, respectively. We further investigated the spatial architecture of 5ALA + enriched regions by analyzing spatial transcriptomics from an independent IDH-wt GBM cohort (N = 16). Lastly, we performed survival analysis using Cox Proportinal-Hazards model on large GBM cohorts. RESULTS: SPRP analysis integrated with single-cell and spatial transcriptomics uncovered that the GBM molecular subtype heterogeneity is likely to manifest regionally in a cell-type-specific manner. Infiltrative 5ALA + cell population(s) harboring transcriptionally concordant GBM and myeloid cells with mesenchymal subtype, -active wound response, and glycolytic metabolic signature, was shown to reside within the invasive margin spatially distinct from the tumor core. The spatial co-localization of the infiltrating MES GBM and myeloid cells within the 5ALA + region indicates PpIX fluorescence can effectively be utilized to resect the immune reactive zone beyond the tumor core. Finally, 5ALA + gene signatures were associated with poor survival and recurrence in GBM, signifying that the transition from primary to recurrent GBM is not discrete but rather a continuum whereby primary infiltrative 5ALA + remnant tumor cells more closely resemble the eventual recurrent GBM. CONCLUSIONS: Elucidating the unique molecular and cellular features of the 5ALA + population within tumor invasive margin opens up unique possibilities to develop more effective treatments to delay or block GBM recurrence, and warrants commencement of such treatments as early as possible post-surgical resection of the primary neoplasm.


Subject(s)
Glioblastoma , Humans , Glioblastoma/genetics , Transcriptome , Neoplasm Recurrence, Local/genetics , Gene Expression Profiling , Algorithms
17.
J Neurosci ; 43(29): 5290-5304, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37369586

ABSTRACT

The perforant path provides the primary cortical excitatory input to the hippocampus. Because of its important role in information processing and coding, entorhinal projections to the dentate gyrus have been studied in considerable detail. Nevertheless, synaptic transmission between individual connected pairs of entorhinal stellate cells and dentate granule cells remains to be characterized. Here, we have used mouse organotypic entorhino-hippocampal tissue cultures of either sex, in which the entorhinal cortex (EC) to dentate granule cell (GC; EC-GC) projection is present, and EC-GC pairs can be studied using whole-cell patch-clamp recordings. By using cultures of wild-type mice, the properties of EC-GC synapses formed by afferents from the lateral and medial entorhinal cortex were compared, and differences in short-term plasticity were identified. As the perforant path is severely affected in Alzheimer's disease, we used tissue cultures of amyloid precursor protein (APP)-deficient mice to examine the role of APP at this synapse. APP deficiency altered excitatory neurotransmission at medial perforant path synapses, which was accompanied by transcriptomic and ultrastructural changes. Moreover, presynaptic but not postsynaptic APP deletion through the local injection of Cre-expressing adeno-associated viruses in conditional APPflox/flox tissue cultures increased the neurotransmission efficacy at perforant path synapses. In summary, these data suggest a physiological role for presynaptic APP at medial perforant path synapses that may be adversely affected under altered APP processing conditions.SIGNIFICANCE STATEMENT The hippocampus receives input from the entorhinal cortex via the perforant path. These projections to hippocampal dentate granule cells are of utmost importance for learning and memory formation. Although there is detailed knowledge about perforant path projections, the functional synaptic properties at the level of individual connected pairs of neurons are not well understood. In this study, we investigated the role of APP in mediating functional properties and transmission rules in individually connected neurons using paired whole-cell patch-clamp recordings and genetic tools in organotypic tissue cultures. Our results show that presynaptic APP expression limits excitatory neurotransmission via the perforant path, which could be compromised in pathologic conditions such as Alzheimer's disease.


Subject(s)
Alzheimer Disease , Perforant Pathway , Mice , Animals , Perforant Pathway/physiology , Amyloid beta-Protein Precursor/genetics , Alzheimer Disease/pathology , Dentate Gyrus/physiology , Synaptic Transmission/physiology , Synapses/physiology
18.
Cancer Immunol Res ; 11(6): 810-829, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37139603

ABSTRACT

There are no targeted therapies for patients with triple-negative breast cancer (TNBC). TNBC is enriched in breast cancer stem cells (BCSC), which play a key role in metastasis, chemoresistance, relapse, and mortality. γδ T cells hold great potential in immunotherapy against cancer and might provide an approach to therapeutically target TNBC. γδ T cells are commonly observed to infiltrate solid tumors and have an extensive repertoire of tumor-sensing mechanisms, recognizing stress-induced molecules and phosphoantigens (pAgs) on transformed cells. Herein, we show that patient-derived triple-negative BCSCs are efficiently recognized and killed by ex vivo expanded γδ T cells from healthy donors. Orthotopically xenografted BCSCs, however, were refractory to γδ T-cell immunotherapy. We unraveled concerted differentiation and immune escape mechanisms: xenografted BCSCs lost stemness, expression of γδ T-cell ligands, adhesion molecules, and pAgs, thereby evading immune recognition by γδ T cells. Indeed, neither promigratory engineered γδ T cells, nor anti-PD-1 checkpoint blockade, significantly prolonged overall survival of tumor-bearing mice. BCSC immune escape was independent of the immune pressure exerted by the γδ T cells and could be pharmacologically reverted by zoledronate or IFNα treatment. These results pave the way for novel combinatorial immunotherapies for TNBC.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/metabolism , Monitoring, Immunologic , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells
19.
Mol Ther Nucleic Acids ; 32: 671-688, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37215154

ABSTRACT

Reactivation of fetal hemoglobin (HbF) is a commonly adapted strategy to ameliorate ß-hemoglobinopathies. However, the continued production of defective adult hemoglobin (HbA) limits HbF tetramer production affecting the therapeutic benefits. Here, we evaluated deletional hereditary persistence of fetal hemoglobin (HPFH) mutations and identified an 11-kb sequence, encompassing putative repressor region (PRR) to ß-globin exon-1 (ßE1), as the core deletion that ablates HbA and exhibits superior HbF production compared with HPFH or other well-established targets. PRR-ßE1-edited hematopoietic stem and progenitor cells (HSPCs) retained their genome integrity and their engraftment potential to repopulate for long-term hematopoiesis in immunocompromised mice producing HbF positive cells in vivo. Furthermore, PRR-ßE1 gene editing is feasible without ex vivo HSPC culture. Importantly, the editing induced therapeutically significant levels of HbF to reverse the phenotypes of both sickle cell disease and ß-thalassemia major. These findings imply that PRR-ßE1 gene editing of patient HSPCs could lead to improved therapeutic outcomes for ß-hemoglobinopathy gene therapy.

20.
Glia ; 71(9): 2117-2136, 2023 09.
Article in English | MEDLINE | ID: mdl-37208965

ABSTRACT

The pro-inflammatory cytokine tumor necrosis factor α (TNFα) tunes the capacity of neurons to express synaptic plasticity. It remains, however, unclear how TNFα mediates synaptic positive (=change) and negative (=stability) feedback mechanisms. We assessed effects of TNFα on microglia activation and synaptic transmission onto CA1 pyramidal neurons of mouse organotypic entorhino-hippocampal tissue cultures. TNFα mediated changes in excitatory and inhibitory neurotransmission in a concentration-dependent manner, where low concentration strengthened glutamatergic neurotransmission via synaptic accumulation of GluA1-only-containing AMPA receptors and higher concentration increased inhibition. The latter induced the synaptic accumulation of GluA1-only-containing AMPA receptors as well. However, activated, pro-inflammatory microglia mediated a homeostatic adjustment of excitatory synapses, that is, an initial increase in excitatory synaptic strength at 3 h returned to baseline within 24 h, while inhibitory neurotransmission increased. In microglia-depleted tissue cultures, synaptic strengthening triggered by high levels of TNFα persisted and the impact of TNFα on inhibitory neurotransmission was still observed and dependent on its concentration. These findings underscore the essential role of microglia in TNFα-mediated synaptic plasticity. They suggest that pro-inflammatory microglia mediate synaptic homeostasis, that is, negative feedback mechanisms, which may affect the ability of neurons to express further plasticity, thereby emphasizing the importance of microglia as gatekeepers of synaptic change and stability.


Subject(s)
Microglia , Tumor Necrosis Factor-alpha , Mice , Animals , Tumor Necrosis Factor-alpha/pharmacology , Receptors, AMPA , Neuronal Plasticity/physiology , Hippocampus , Synaptic Transmission/physiology , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...