Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38069024

ABSTRACT

Nodule bacteria (rhizobia) represent a suitable model to address a range of fundamental genetic problems, including the impacts of natural selection on the evolution of symbiotic microorganisms. Rhizobia possess multipartite genomes in which symbiotically specialized (sym) genes differ from core genes in their natural histories. Diversification of sym genes is responsible for rhizobia microevolution, which depends on host-induced natural selection. By contrast, diversification of core genes is responsible for rhizobia speciation, which occurs under the impacts of still unknown selective factors. In this paper, we demonstrate that in goat's rue rhizobia (Neorhizobium galegae) populations collected at North Caucasus, representing two host-specific biovars orientalis and officianalis (N2-fixing symbionts of Galega orientalis and G. officinalis), the evolutionary mechanisms are different for core and sym genes. In both N. galegae biovars, core genes are more polymorphic than sym genes. In bv. orientalis, the evolution of core genes occurs under the impacts of driving selection (dN/dS > 1), while the evolution of sym genes is close to neutral (dN/dS ≈ 1). In bv. officinalis, the evolution of core genes is neutral, while for sym genes, it is dependent on purifying selection (dN/dS < 1). A marked phylogenetic congruence of core and sym genes revealed using ANI analysis may be due to a low intensity of gene transfer within and between N. galegae biovars. Polymorphism in both gene groups and the impacts of driving selection on core gene evolution are more pronounced in bv. orientalis than in bv. officianalis, reflecting the diversities of their respective host plant species. In bv. orientalis, a highly significant (P0 < 0.001) positive correlation is revealed between the p-distance and dN/dS values for core genes, while in bv. officinalis, this correlation is of low significance (0.05 < P0 < 0.10). For sym genes, the correlation between p-distance and dN/dS values is negative in bv. officinalis but is not revealed in bv. orientalis. These data, along with the functional annotation of core genes implemented using Gene Ontology tools, suggest that the evolution of bv. officinalis is based mostly on adaptation for in planta niches while in bv. orientalis, evolution presumably depends on adaptation for soil niches. New insights into the tradeoff between natural selection and genetic diversity are presented, suggesting that gene nucleotide polymorphism may be extended by driving selection only in ecologically versatile organisms capable of supporting a broad spectrum of gene alleles in their gene pools.


Subject(s)
Galega , Rhizobiaceae , Rhizobium , Rhizobiaceae/genetics , Phylogeny , Rhizobium/genetics , Polymorphism, Genetic , Symbiosis/genetics , Evolution, Molecular
2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37047311

ABSTRACT

The process of straw decomposition is dynamic and is accompanied by the succession of the microbial decomposing community, which is driven by poorly understood interactions between microorganisms. Soil is a complex ecological niche, and the soil microbiome can serve as a source of potentially active cellulolytic microorganisms. Here, we performed an experiment on the de novo colonization of oat straw by the soil microbial community by placing nylon bags with sterilized oat straw in the pots filled with chernozem soil and incubating them for 6 months. The aim was to investigate the changes in decomposer microbiota during this process using conventional sequencing techniques. The bacterial succession during straw decomposition occurred in three phases: the early phase (first month) was characterized by high microbial activity and low diversity, the middle phase (second to third month) was characterized by low activity and low diversity, and the late phase (fourth to sixth months) was characterized by low activity and high diversity. Analysis of amplicon sequencing data revealed three groups of co-changing phylotypes corresponding to these phases. The early active phase was abundant in the cellulolytic members from Pseudomonadota, Bacteroidota, Bacillota, and Actinobacteriota for bacteria and Ascomycota for fungi, and most of the primary phylotypes were gone by the end of the phase. The second intermediate phase was marked by the set of phylotypes from the same phyla persisting in the community. In the mature community of the late phase, apart from the core phylotypes, non-cellulolytic members from Bdellovibrionota, Myxococcota, Chloroflexota, and Thermoproteota appeared. Full metagenome sequencing of the microbial community from the end of the middle phase confirmed that major bacterial and fungal members of this consortium had genes of glycoside hydrolases (GH) connected to cellulose and chitin degradation. The real-time analysis of the selection of these genes showed that their representation varied between phases, and this occurred under the influence of the host, and not the GH family factor. Our findings demonstrate that soil microbial community may act as an efficient source of cellulolytic microorganisms and that colonization of the cellulolytic substrate occurs in several phases, each characterized by its own taxonomic and functional profile.


Subject(s)
Ascomycota , Microbiota , Soil/chemistry , Avena , Bacteria/genetics , Bacteria/metabolism , Glycoside Hydrolases/metabolism , Soil Microbiology
3.
Microorganisms ; 11(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36985294

ABSTRACT

Restoration of anthropogenically disturbed soils is an urgent problem in modern ecology and soil biology. Restoration processes in northern environments are especially important, due to the small amounts of fertile land and low levels of natural succession. We analyzed the soil microbiota, which is one of the indicators of the succession process is the soil. Samples were obtained from three disturbed soils (self-overgrown and reclaimed quarries), and two undisturbed soils (primary and secondary forests). Primary Forest soil had a well-developed soil profile, and a low pH and TOC (total organic carbon) amount. The microbial community of this soil had low richness, formed a clear remote cluster in the beta-diversity analysis, and showed an overrepresentation of Geobacter (Desulfobacteriota). Soil formation in clay and limestone abandoned quarries was at the initial stage, and was caused by both a low rate of mineral profile formation and severe climatic conditions in the region. Microbial communities of these soils did not have specific abundant taxa, and included a high amount of sparse taxa. Differences in taxa composition were correlated with abiotic factors (ammonium concentration), which, in turn, can be explained by the parent rock properties. Limestone quarry reclaimed by topsoil coverage resulted in an adaptation of the top soil microbiota to a novel parent rock. According to the CCA analysis, the microbial composition of samples was connected with pH, TOC and ammonium nitrogen concentration. Changes in pH and TOC were connected with ASVs from Chloroflexota, Gemmatimonadota and Patescibacteria. ASVs from Gemmatimonadota also were correlated with a high ammonium concentration.

4.
Life (Basel) ; 13(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36836761

ABSTRACT

Crop rotation is one of the oldest and most effective methods of restoring soil fertility, which declines when the same plant is grown repeatedly. One of the reasons for a reduction in fertility is the accumulation of pathogenic and unfavorable microbiota. The modern crop rotation schemes (a set of plant species and their order in the crop rotation) are highly effective but are designed without considering soil microbiota dynamics. The main goal of this study was to perform a short-term experiment with multiple plant combinations to access the microbiological effects of crop rotation. It could be useful for the design of long-term crop rotation schemes that take the microbiological effects of the crop rotation into account. For the analysis, five plants (legumes: vetch, clover, and cereals: oats, wheat, and barley) were used. These five plants were separately grown in pots with soil. After the first phase of vegetation, the plants were removed from the soil and a new crop was planted. Soil samples from all 25 possible combinations of primary and secondary crops were investigated using v4-16S rDNA gene sequencing. It was shown that the short-term experiments (up to 40 days of growing) are effective enough to find microbial shifts in bulk soil from different plants. Both primary and secondary cultures are significant factors for the microbial composition of microbial soil communities. Changes are the most significant in the microbial communities of vetch soils, especially in the case of vetch monoculture. Growing clover also leads to changes in microbiota, especially according to beta-diversity. Data obtained can be used to develop new crop rotation schemes that take into account the microbiological effects of various crops.

5.
Methods Protoc ; 5(6)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36548141

ABSTRACT

A single universal open protocol RIAM (named after Research Institute for Agricultural Microbiology) for the isolation of high purity DNA from different types of soils and other substrates (high and low in humic, clay content, organic fertilizer, etc.) is proposed. The main features of the RIAM protocol are the absence of the sorption-desorption stage on silica columns, the use of high concentrations of phosphate in buffers, which prevents DNA sorption on minerals, and DNA precipitation using CTAB. The performance of RIAM was compared with a reference commercial kit and showed very good results in relation to the purity and quantity of DNA, as well as the absence of inhibitory activity on PCR. In all cases, the RIAM ensured the isolation of DNA in quantities much greater than the commercial kit without the effect of PCR inhibition up to 50 ng DNA per reaction in a volume of 15 µL. The latter circumstance along with the ability of the protocol to extract low molecular weight DNA fractions makes the method especially suitable for those cases where quantitative assessments, detection of minor components of soil microbiota, and completeness of isolation of all DNA fractions are required.

6.
Plants (Basel) ; 11(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36432739

ABSTRACT

Drought and heavy metals seriously affect plant growth and the biodiversity of the associated rhizosphere microbiomes, which, in turn, could be involved in the adaptation of plants to these environmental stresses. Rhizosphere soil was collected from a three-factor pot experiment, where pea line SGE and its Cd-tolerant mutant SGECdt were cultivated under both optimal and limited water conditions and treated with a toxic Cd concentration. The taxonomic structure of the prokaryotic rhizosphere microbiome was analyzed with the high-throughput sequencing of 16S rRNA amplicon libraries. A permutation test demonstrated statistically significant effects of Cd and water stress but not of pea genotype on the rhizosphere microbiome structure. Phylogenetic isometric log-ratio data transformation identified the taxonomic balances that were affected by abiotic factors and pea genotypes. A small number of significant (log ratio [-3.0:+3.0]) and phylogenetically deep balances characterized water stress, while a larger number of weak (log ratio [-0.8:+0.8]) phylogenetically lower balances described the influence of the plant genotype. Stress caused by cadmium took on an intermediate position. The main conclusion of the study is that the most powerful factor affecting the rhizosphere microbiome was water stress, and the weakest factor was plant genotype since it demonstrated a very weak transformation of the taxonomic structure of rhizosphere microbiomes in terms of alpha diversity indices, beta diversity, and the log ratio values of taxonomic balances.

7.
Front Plant Sci ; 13: 1026943, 2022.
Article in English | MEDLINE | ID: mdl-36388581

ABSTRACT

Nodule bacteria (rhizobia), N2-fixing symbionts of leguminous plants, represent an excellent model to study the fundamental issues of evolutionary biology, including the tradeoff between microevolution, speciation, and macroevolution, which remains poorly understood for free-living organisms. Taxonomically, rhizobia are extremely diverse: they are represented by nearly a dozen families of α-proteobacteria (Rhizobiales) and by some ß-proteobacteria. Their genomes are composed of core parts, including house-keeping genes (hkg), and of accessory parts, including symbiotically specialized (sym) genes. In multipartite genomes of evolutionary advanced fast-growing species (Rhizobiaceae), sym genes are clustered on extra-chromosomal replicons (megaplasmids, chromids), facilitating gene transfer in plant-associated microbial communities. In this review, we demonstrate that in rhizobia, microevolution and speciation involve different genomic and ecological mechanisms: the first one is based on the diversification of sym genes occurring under the impacts of host-induced natural selection (including its disruptive, frequency-dependent and group forms); the second one-on the diversification of hkgs under the impacts of unknown factors. By contrast, macroevolution represents the polyphyletic origin of super-species taxa, which are dependent on the transfer of sym genes from rhizobia to various soil-borne bacteria. Since the expression of newly acquired sym genes on foreign genomic backgrounds is usually restricted, conversion of resulted recombinants into the novel rhizobia species involves post-transfer genetic changes. They are presumably supported by host-induced selective processes resulting in the sequential derepression of nod genes responsible for nodulation and of nif/fix genes responsible for symbiotic N2 fixation.

8.
PeerJ ; 10: e13888, 2022.
Article in English | MEDLINE | ID: mdl-36061756

ABSTRACT

High-throughput sequencing of amplicon libraries is the most widespread and one of the most effective ways to study the taxonomic structure of microbial communities, even despite growing accessibility of whole metagenome sequencing. Due to the targeted amplification, the method provides unparalleled resolution of communities, but at the same time perturbs initial community structure thereby reducing data robustness and compromising downstream analyses. Experimental research of the perturbations is largely limited to comparative studies on different PCR protocols without considering other sources of experimental variation related to characteristics of the initial microbial composition itself. Here we analyse these sources and demonstrate how dramatically they effect the relative abundances of taxa during the PCR cycles. We developed the mathematical model of the PCR amplification assuming the heterogeneity of amplification efficiencies and considering the compositional nature of data. We designed the experiment-five consecutive amplicon cycles (22-26) with 12 replicates for one real human stool microbial sample-and estimated the dynamics of the microbial community in line with the model. We found the high heterogeneity in amplicon efficiencies of taxa that leads to the non-linear and substantial (up to fivefold) changes in relative abundances during PCR. The analysis of possible sources of heterogeneity revealed the significant association between amplicon efficiencies and the energy of secondary structures of the DNA templates. The result of our work highlights non-trivial changes in the dynamics of real-life microbial communities due to their compositional nature. Obtained effects are specific not only for amplicon libraries, but also for any studies of metagenome dynamics.


Subject(s)
Bacteria , Nucleic Acid Amplification Techniques , Humans , Alleles , RNA, Ribosomal, 16S/genetics , Polymerase Chain Reaction/methods
9.
Int J Mol Sci ; 23(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36142684

ABSTRACT

Recycling plant matter is one of the challenges facing humanity today and depends on efficient lignocellulose degradation. Although many bacterial strains from natural substrates demonstrate cellulolytic activities, the CAZymes (Carbohydrate-Active enZYmes) responsible for these activities are very diverse and usually distributed among different bacteria in one habitat. Thus, using microbial consortia can be a solution to rapid and effective decomposition of plant biomass. Four cellulolytic consortia were isolated from enrichment cultures from composting natural lignocellulosic substrates-oat straw, pine sawdust, and birch leaf litter. Enrichment cultures facilitated growth of similar, but not identical cellulose-decomposing bacteria from different substrates. Major components in all consortia were from Proteobacteria, Actinobacteriota and Bacteroidota, but some were specific for different substrates-Verrucomicrobiota and Myxococcota from straw, Planctomycetota from sawdust and Firmicutes from leaf litter. While most members of the consortia were involved in the lignocellulose degradation, some demonstrated additional metabolic activities. Consortia did not differ in the composition of CAZymes genes, but rather in axillary functions, such as ABC-transporters and two-component systems, usually taxon-specific and associated with CAZymes. Our findings show that enrichment cultures can provide reproducible cellulolytic consortia from various lignocellulosic substrates, the stability of which is ensured by tight microbial relations between its components.


Subject(s)
Lignin , Microbial Consortia , Bacteria/metabolism , Cellulose/metabolism , Lignin/metabolism
10.
Microorganisms ; 9(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34835464

ABSTRACT

The rhizosphere community represents an "ecological interface" between plant and soil, providing the plant with a number of advantages. Despite close connection and mutual influence in this system, the knowledge about the connection of plant and rhizosphere diversity is still controversial. One of the most valuable factors of this uncertainty is a rough estimation of plant diversity. NGS sequencing can make the estimations of the plant community more precise than classical geobotanical methods. We investigate fallow and crop sites, which are similar in terms of environmental conditions and soil legacy, yet at the same time are significantly different in terms of plant diversity. We explored amplicons of both the plant root mass (ITS1 DNA) and the microbial communities (16S rDNA); determined alpha- and beta-diversity indices and their correlation, and performed differential abundance analysis. In the analysis, there is no correlation between the alpha-diversity indices of plants and the rhizosphere microbial communities. The beta-diversity between rhizosphere microbial communities and plant communities is highly correlated (R = 0.866, p = 0.01). ITS1 sequencing is effective for the description of plant root communities. There is a connection between rhizosphere communities and the composition of plants, but on the alpha-diversity level we found no correlation. In the future, the connection of alpha-diversities should be explored using ITS1 sequencing, even in more similar plant communities-for example, in different synusia.

11.
Front Plant Sci ; 12: 642591, 2021.
Article in English | MEDLINE | ID: mdl-34025691

ABSTRACT

The difference in symbiotic specificity between peas of Afghanistan and European phenotypes was investigated using molecular modeling. Considering segregating amino acid polymorphism, we examined interactions of pea LykX-Sym10 receptor heterodimers with four forms of Nodulation factor (NF) that varied in natural decorations (acetylation and length of the glucosamine chain). First, we showed the stability of the LykX-Sym10 dimer during molecular dynamics (MD) in solvent and in the presence of a membrane. Then, four NFs were separately docked to one European and two Afghanistan dimers, and the results of these interactions were in line with corresponding pea symbiotic phenotypes. The European variant of the LykX-Sym10 dimer effectively interacts with both acetylated and non-acetylated forms of NF, while the Afghanistan variants successfully interact with the acetylated form only. We additionally demonstrated that the length of the NF glucosamine chain contributes to controlling the effectiveness of the symbiotic interaction. The obtained results support a recent hypothesis that the LykX gene is a suitable candidate for the unidentified Sym2 allele, the determinant of pea specificity toward Rhizobium leguminosarum bv. viciae strains producing NFs with or without an acetylation decoration. The developed modeling methodology demonstrated its power in multiple searches for genetic determinants, when experimental detection of such determinants has proven extremely difficult.

12.
PeerJ ; 9: e10871, 2021.
Article in English | MEDLINE | ID: mdl-33643711

ABSTRACT

Rendzic Leptosols are intrazonal soils formed on limestone bedrock. The specialty of these soils is that parent rock material is more influential in shaping soil characteristics than zonal factors such as climate, especially during soil formation. Unlike fast evolving Podzols due to their leaching regime, Leptosols do not undergo rapid development due to the nature of the limestone. Little is known how microbiome reflects this process, so we assessed microbiome composition of Rendzic Leptosols of different ages, arising from disruption and subsequent reclamation. The mountains and foothills that cover much of the Crimean Peninsula are ideal for this type of study, as the soils were formed on limestone and have been subjected to anthropogenic impacts through much of human history. Microbiomes of four soil sites forming a chronosequence, including different soil horizons, were studied using sequencing of 16S rRNA gene libraries and quantitative PCR. Dominant phyla for all soil sites were Actinobacteria, Proteobacteria, Acidobacteria, Bacteroidetes, Thaumarchaeota, Planctomycetes, Verrucomicrobia and Firmicutes. Alpha diversity was similar across sites and tended to be higher in topsoil. Beta diversity showed that microbiomes diverged according to the soil site and the soil horizon. The oldest and the youngest soils had the most similar microbiomes, which could have been caused by their geographic proximity. Oligotrophic bacteria from Chitinophagaceae, Blastocatellaceae and Rubrobacteriaceae dominated the microbiome of these soils. The microbiome of 700-year old soil was the most diverse. This soil was from the only study location with topsoil formed by plant litter, which provided additional nutrients and could have been the driving force of this differentiation. Consistent with this assumption, this soil was abundant in copiotrophic bacteria from Proteobacteria and Actinobacteria phyla. The microbiome of 50-year old Leptosol was more similar to the microbiome of benchmark soil than the microbiome of 700-year old soil, especially by weighted metrics. CCA analysis, in combination with PERMANOVA, linked differences in microbiomes to the joint change of all soil chemical parameters between soil horizons. Local factors, such as parent material and plant litter, more strongly influenced the microbiome composition in Rendzic Leptosols than soil age.

13.
Genes (Basel) ; 12(1)2021 01 18.
Article in English | MEDLINE | ID: mdl-33477547

ABSTRACT

Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a 'natural' unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, "R. indicum" and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.


Subject(s)
DNA, Bacterial/genetics , Genome, Bacterial , Phylogeny , Rhizobium leguminosarum/classification , Rhizobium leguminosarum/genetics , Sequence Analysis, DNA
14.
Plants (Basel) ; 9(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353122

ABSTRACT

Aluminium being one of the most abundant elements is very toxic for plants causing inhibition of nutrient uptake and productivity. The aim of this study was to evaluate the potential of microbial consortium consisting of arbuscular mycorrhizal fungus (AMF), rhizobia and PGPR for counteracting negative effects of Al toxicity on four pea genotypes differing in Al tolerance. Pea plants were grown in acid soil supplemented with AlCl3 (pHKCl = 4.5) or neutralized with CaCO3 (pHKCl = 6.2). Inoculation increased shoot and/or seed biomass of plants grown in Al-supplemented soil. Nodule number and biomass were about twice on roots of Al-treated genotypes after inoculation. Inoculation decreased concentrations of water-soluble Al in the rhizosphere of all genotypes grown in Al-supplemented soil by about 30%, improved N2 fixation and uptake of fertilizer 15N and nutrients from soil, and increased concentrations of water-soluble nutrients in the rhizosphere. The structure of rhizospheric microbial communities varied to a greater extent depending on the plant genotype, as compared to soil conditions and inoculation. Thus, this study highlights the important role of symbiotic microorganisms and the plant genotype in complex interactions between the components of the soil-microorganism-plant continuum subjected to Al toxicity.

15.
PLoS One ; 15(11): e0242060, 2020.
Article in English | MEDLINE | ID: mdl-33216789

ABSTRACT

High-throughput 16S rRNA sequencing was performed to compare the microbiomes inhabiting two contrasting soil types-sod-podzolic soil and chernozem-and the corresponding culturome communities of potentially cellulolytic bacteria cultured on standard Hutchinson media. For each soil type, soil-specific microorganisms have been identified: for sod-podzolic soil-Acidothermus, Devosia, Phenylobacterium and Tumebacillus, and for chernozem soil-Sphingomonas, Bacillus and Blastococcus. The dynamics of differences between soil types for bulk soil samples and culturomes varied depending on the taxonomic level of the corresponding phylotypes. At high taxonomic levels, the number of common taxa between soil types increased more slowly for bulk soil than for culturome. Differences between soil-specific phylotypes were detected in bulk soil at a low taxonomic level (genus, species). A total of 13 phylotypes were represented both in soil and in culturome. No relationship was shown between the abundance of these phylotypes in soil and culturome.


Subject(s)
Bacteria/classification , Bacteria/growth & development , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Bacteria/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Evolution, Molecular , High-Throughput Nucleotide Sequencing , Phylogeny , Soil Microbiology
16.
Mol Plant Microbe Interact ; 33(10): 1232-1241, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32686981

ABSTRACT

A collection of rhizobial strains isolated from root nodules of the narrowly endemic legume species Oxytropis erecta, O. anadyrensis, O. kamtschatica, and O. pumilio originating from the Kamchatka Peninsula (Russian Federation) was obtained. Analysis of the 16S ribosomal RNA gene sequence showed a significant diversity of isolates belonging to families Rhizobiaceae (genus Rhizobium), Phyllobacteriaceae (genera Mesorhizobium, Phyllobacterium), and Bradyrhizobiaceae (genera Bosea, Tardiphaga). A plant nodulation assay showed that only strains belonging to genus Mesorhizobium could form nitrogen-fixing nodules on Oxytropis plants. The strains M. loti 582 and M. huakuii 583, in addition to symbiotic clusters, possessed genes of the type III and type VI secretion systems (T3SS and T6SS, respectively), which can influence the host specificity of strains. These strains formed nodules of two types (elongated and rounded) on O. kamtschatica roots. We suggest this phenomenon may result from Nod factor-dependent and -independent nodulation strategies. The obtained strains are of interest for further study of the T3SS and T6SS gene function and their role in the development of rhizobium-legume symbiosis. The prospects of using rhizobia having both gene systems related to symbiotic and nonsymbiotic nodulation strategies to enhance the efficiency of plant-microbe interactions by expanding the host specificity and increasing nodulation efficiency are discussed.


Subject(s)
Bradyrhizobiaceae , Mesorhizobium , Oxytropis/microbiology , Rhizobium , Symbiosis , Type III Secretion Systems/genetics , Type VI Secretion Systems/genetics , Bradyrhizobiaceae/genetics , Mesorhizobium/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Root Nodules, Plant/microbiology
17.
Genes (Basel) ; 10(12)2019 12 01.
Article in English | MEDLINE | ID: mdl-31805640

ABSTRACT

Vavilovia formosa is a relict leguminous plant growing in hard-to-reach habitats in the rocky highlands of the Caucasus and Middle East, and it is considered as the putative closest living relative of the last common ancestor (LCA) of the Fabeae tribe. Symbionts of Vavilovia belonging to Rhizobium leguminosarum bv. viciae compose a discrete group that differs from the other strains, especially in the nucleotide sequences of the symbiotically specialised (sym) genes. Comparison of the genomes of Vavilovia strains with the reference group composed of R. leguminosarum bv. viciae strains isolated from Pisum and Vicia demonstrated that the vavilovia strains have a set of genomic features, probably indicating the important stages of microevolution of the symbiotic system. Specifically, symbionts of Vavilovia (considered as an ancestral group) demonstrated a scattered arrangement of sym genes (>90 kb cluster on pSym), with the location of nodT gene outside of the other nod operons, the presence of nodX and fixW, and the absence of chromosomal fixNOPQ copies. In contrast, the reference (derived) group harboured sym genes as a compact cluster (<60 kb) on a single pSym, lacking nodX and fixW, with nodT between nodN and nodO, and possessing chromosomal fixNOPQ copies. The TOM strain, obtained from nodules of the primitive "Afghan" peas, occupied an intermediate position because it has the chromosomal fixNOPQ copy, while the other features, the most important of which is presence of nodX and fixW, were similar to the Vavilovia strains. We suggest that genome evolution from the ancestral to the derived R. leguminosarum bv. viciae groups follows the "gain-and-loss of sym genes" and the "compaction of sym cluster" strategies, which are common for the macro-evolutionary and micro-evolutionary processes. The revealed genomic features are in concordance with a relict status of the vavilovia strains, indicating that V. formosa coexists with ancestral microsymbionts, which are presumably close to the LCA of R. leguminosarum bv. viciae.


Subject(s)
DNA, Bacterial/genetics , Evolution, Molecular , Fabaceae/microbiology , Genes, Bacterial , Rhizobium leguminosarum/genetics , Symbiosis/genetics , Bacterial Proteins/genetics , Rhizobium leguminosarum/isolation & purification , Species Specificity
18.
Genes (Basel) ; 10(12)2019 12 01.
Article in English | MEDLINE | ID: mdl-31805683

ABSTRACT

Twenty-two rhizobia strains isolated from three distinct populations (North Ossetia, Dagestan, and Armenia) of a relict legume Vavilovia formosa were analysed to determine their position within Rhizobium leguminosarum biovar viciae (Rlv). These bacteria are described as symbionts of four plant genera Pisum, Vicia, Lathyrus, and Lens from the Fabeae tribe, of which Vavilovia is considered to be closest to its last common ancestor (LCA). In contrast to biovar viciae, bacteria from Rhizobium leguminosarum biovar trifolii (Rlt) inoculate plants from the Trifolieae tribe. Comparison of house-keeping (hkg: 16S rRNA, glnII, gltA, and dnaK) and symbiotic (sym: nodA, nodC, nodD, and nifH) genes of the symbionts of V. formosa with those of other Rlv and Rlt strains reveals a significant group separation, which was most pronounced for sym genes. A remarkable feature of the strains isolated from V. formosa was the presence of the nodX gene, which was commonly found in Rlv strains isolated from Afghanistan pea genotypes. Tube testing of different strains on nine plant species, including all genera from the Fabeae tribe, demonstrated that the strains from V. formosa nodulated the same cross inoculation group as the other Rlv strains. Comparison of nucleotide similarity in sym genes suggested that their diversification within sym-biotypes of Rlv was elicited by host plants. Contrariwise, that of hkg genes could be caused by either local adaptation to soil niches or by genetic drift. Long-term ecological isolation, genetic separation, and the ancestral position of V. formosa suggested that symbionts of V. formosa could be responsible for preserving ancestral genotypes of the Rlv biovar.


Subject(s)
DNA, Bacterial/genetics , Fabaceae/microbiology , Genotype , Phylogeny , Rhizobium leguminosarum/genetics , Root Nodules, Plant/microbiology , Symbiosis/genetics , Rhizobium leguminosarum/isolation & purification
19.
Ecol Evol ; 9(18): 10377-10386, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31624556

ABSTRACT

We hypothesized that population diversities of partners in nitrogen-fixing rhizobium-legume symbiosis can be matched for "interplaying" genes. We tested this hypothesis using data on nucleotide polymorphism of symbiotic genes encoding two components of the plant-bacteria signaling system: (a) the rhizobial nodA acyltransferase involved in the fatty acid tail decoration of the Nod factor (signaling molecule); (b) the plant NFR5 receptor required for Nod factor binding. We collected three wild-growing legume species together with soil samples adjacent to the roots from one large 25-year fallow: Vicia sativa, Lathyrus pratensis, and Trifolium hybridum nodulated by one of the two Rhizobium leguminosarum biovars (viciae and trifolii). For each plant species, we prepared three pools for DNA extraction and further sequencing: the plant pool (30 plant indiv.), the nodule pool (90 nodules), and the soil pool (30 samples). We observed the following statistically significant conclusions: (a) a monotonic relationship between the diversity in the plant NFR5 gene pools and the nodule rhizobial nodA gene pools; (b) higher topological similarity of the NFR5 gene tree with the nodA gene tree of the nodule pool, than with the nodA gene tree of the soil pool. Both nonsynonymous diversity and Tajima's D were increased in the nodule pools compared with the soil pools, consistent with relaxation of negative selection and/or admixture of balancing selection. We propose that the observed genetic concordance between NFR5 gene pools and nodule nodA gene pools arises from the selection of particular genotypes of the nodA gene by the host plant.

20.
Int J Syst Evol Microbiol ; 69(9): 2687-2695, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31166161

ABSTRACT

Two Gram-stain-negative strains, RCAM04680T and RCAM04685, were isolated from root nodules of the relict legume Caragana jubata (Pall.) Poir. originating from the south-western shore of Lake Khuvsgul (Mongolia). The 16S rRNA gene (rrs) sequencing data showed that these novel isolates belong to the genus Bosea and are phylogenetically closest to the type strains Bosea lathyri LMG 26379T, Bosea vaviloviae LMG 28367T, Bosea massiliensis LMG 26221T and Bosea lupini LMG 26383T (the rrs-similarity levels were 98.7-98.8 %). The recA gene of strain RCAM04680T showed the highest sequence similarity to the type strain B. lupini LMG 26383T (95.4 %), while its atpD gene was closest to that of B. lathyri LMG 26379T (94.4 %). The ITS, dnaK and gyrB sequences of this isolate were most similar to the B. vaviloviae LMG 28367T (86.8 % for ITS, 90.4 % for the other genes). The most abundant fatty acid was C18 : 1ω7c (40.8 %). The whole genomes of strains RCAM04680T and RCAM04685 were identical (100 % average nucleotide identity). The highest average nucleotide identity value (82.8 %) was found between the genome of strain RCAM04680T and B. vaviloviae LMG 28367T. The common nodABC genes required for legume nodulation were absent in both strains; however, some other symbiotic nol, nod, nif and fix genes were detected. Based on the genetic study, as well as analyses of the whole-cell fatty acid compositions and phenotypic properties, a new species, Boseacaraganae sp. nov. (type strain RCAM04680T (=LMG 31125T), is proposed.


Subject(s)
Bradyrhizobiaceae/classification , Caragana/microbiology , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition , Bradyrhizobiaceae/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Mongolia , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...