Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8(1): 744, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28963451

ABSTRACT

There are few examples of robust associations between rare copy number variants (CNVs) and complex continuous human traits. Here we present a large-scale CNV association meta-analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study reveals five CNV associations at 1q21.1, 3q29, 7q11.23, 11p14.2, and 18q21.32 and confirms two known loci at 16p11.2 and 22q11.21, implicating at least one anthropometric trait. The discovered CNVs are recurrent and rare (0.01-0.2%), with large effects on height (>2.4 cm), weight (>5 kg), and body mass index (BMI) (>3.5 kg/m2). Burden analysis shows a 0.41 cm decrease in height, a 0.003 increase in waist-to-hip ratio and increase in BMI by 0.14 kg/m2 for each Mb of total deletion burden (P = 2.5 × 10-10, 6.0 × 10-5, and 2.9 × 10-3). Our study provides evidence that the same genes (e.g., MC4R, FIBIN, and FMO5) harbor both common and rare variants affecting body size and that anthropometric traits share genetic loci with developmental and psychiatric disorders.Individual SNPs have small effects on anthropometric traits, yet the impact of CNVs has remained largely unknown. Here, Kutalik and co-workers perform a large-scale genome-wide meta-analysis of structural variation and find rare CNVs associated with height, weight and BMI with large effect sizes.


Subject(s)
Body Height/genetics , Body Weight/genetics , White People/genetics , Anthropometry , Body Mass Index , Body Size/genetics , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 16/genetics , Chromosomes, Human, Pair 18/genetics , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 3/genetics , Chromosomes, Human, Pair 7/genetics , DNA Copy Number Variations , Genome-Wide Association Study , Genotype , Humans , Phenotype , Waist-Hip Ratio
2.
Nat Commun ; 6: 8804, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26542096

ABSTRACT

Eczema often precedes the development of asthma in a disease course called the 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 × 10(-8)) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 × 10(-9)). Additional susceptibility loci identified at genome-wide significance are FLG (1q21.3), IL4/KIF3A (5q31.1), AP5B1/OVOL1 (11q13.1), C11orf30/LRRC32 (11q13.5) and IKZF3 (17q21). We show that predominantly eczema loci increase the risk for the atopic march. Our findings suggest that eczema may play an important role in the development of asthma after eczema.


Subject(s)
Asthma/genetics , Dermatitis, Atopic/genetics , Adaptor Proteins, Vesicular Transport/genetics , Adolescent , Adult , Amino Acid Transport Systems, Neutral/genetics , Calcium-Binding Proteins/genetics , Carrier Proteins/genetics , Child , Child, Preschool , DNA-Binding Proteins/genetics , Disease Progression , Female , Filaggrin Proteins , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Ikaros Transcription Factor/genetics , Interleukin-4/genetics , Kinesins/genetics , Logistic Models , Male , Membrane Proteins/genetics , Middle Aged , Neoplasm Proteins/genetics , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Phenotype , Polymorphism, Single Nucleotide , Receptor, Fibroblast Growth Factor, Type 1/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Young Adult
3.
Nature ; 514(7520): 92-97, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25231870

ABSTRACT

Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.


Subject(s)
Alleles , Genetic Loci/genetics , Menarche/genetics , Parents , Adolescent , Age Factors , Body Mass Index , Breast Neoplasms/genetics , Calcium-Binding Proteins , Cardiovascular Diseases/genetics , Child , Diabetes Mellitus, Type 2/genetics , Europe/ethnology , Female , Genome-Wide Association Study , Genomic Imprinting/genetics , Humans , Hypothalamo-Hypophyseal System/physiology , Intercellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/genetics , Obesity/genetics , Ovary/physiology , Polymorphism, Single Nucleotide/genetics , Potassium Channels, Tandem Pore Domain/genetics , Proteins/genetics , Quantitative Trait Loci/genetics , Receptors, GABA-B/metabolism , Receptors, Retinoic Acid/metabolism , Ribonucleoproteins/genetics , Ubiquitin-Protein Ligases
4.
Mol Autism ; 4(1): 34, 2013 Sep 18.
Article in English | MEDLINE | ID: mdl-24047820

ABSTRACT

BACKGROUND: Social communication difficulties represent an autistic trait that is highly heritable and persistent during the course of development. However, little is known about the underlying genetic architecture of this phenotype. METHODS: We performed a genome-wide association study on parent-reported social communication problems using items of the children's communication checklist (age 10 to 11 years) studying single and/or joint marker effects. Analyses were conducted in a large UK population-based birth cohort (Avon Longitudinal Study of Parents and their Children, ALSPAC, N = 5,584) and followed-up within a sample of children with comparable measures from Western Australia (RAINE, N = 1364). RESULTS: Two of our seven independent top signals (P-discovery <1.0E-05) were replicated (0.009

5.
J Gastroenterol Hepatol ; 27(9): 1520-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22414273

ABSTRACT

BACKGROUND AND AIM: Environmental factors including excessive caloric intake lead to disordered lipid metabolism and fatty liver disease (FLD). However, FLD demonstrates heritability suggesting genetic factors are also important. We aimed to use a candidate gene approach to examine the association between FLD and single nucleotide polymorphisms (SNPs) in lipid metabolism genes in the adolescent population-based Western Australian Pregnancy (Raine) Cohort. METHODS: A total 951 seventeen year-olds underwent hepatic ultrasound, anthropometric and biochemical characterization, DNA extraction and genotyping for 57 SNPs in seven lipid metabolism genes (ApoB100, ATGL, ABHD5, MTTP, CETP, SREBP-1c, PPARα). Associations were adjusted for metabolic factors and Bonferroni corrected. RESULTS: The prevalence of FLD was 16.2% (11.4% male vs 21.2% female, P=0.001). Multivariate analysis of metabolic factors found suprailiac skinfold thickness (SST) to be the major predictor of FLD in females and males (odds ratio [OR] 1.11, 95% confidence interval [CI] 1.08-1.15, P=1.7×10(-10) and OR 1.17, 95%CI 1.13-1.22, P=2.4×10(-11) , respectively). In females, two SNPs in linkage disequilibrium from the CETP gene were associated with FLD: rs12447924 (OR 2.16, 95%CI 1.42-3.32, P=0.0003) and rs12597002 (OR=2.22, 95%CI 1.46-3.41 P=0.0002). In lean homozygotes, the probability of FLD was over 30%, compared with 10-15% in lean heterozygotes and 3-5% in lean wild-types. However, these associations were modified by SST, such that for obese individuals, the probability of FLD was over 30% in all genotype groups. CONCLUSIONS: Cholesteryl ester transfer protein gene polymorphisms are associated with an increased risk of FLD in adolescent females. The effect is independent of adiposity in homozygotes, thereby placing lean individuals at a significant risk of FLD.


Subject(s)
Adiposity , Cholesterol Ester Transfer Proteins/genetics , Fatty Liver/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , Adolescent , Anthropometry , Apolipoprotein B-100/genetics , Australia , Blood Pressure , Carrier Proteins/genetics , Confidence Intervals , Fatty Liver/blood , Fatty Liver/diagnostic imaging , Female , Genotype , Humans , Insulin Resistance , Lipase/genetics , Liver/diagnostic imaging , Male , Multivariate Analysis , Odds Ratio , PPAR alpha/genetics , Polymorphism, Single Nucleotide , Sex Factors , Skinfold Thickness , Sterol Regulatory Element Binding Protein 1/genetics , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...