Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem X ; 22: 101440, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38756467

ABSTRACT

This study investigated the effect of polyols erythritol, d-mannitol, and maltitol on the volatility of aroma compounds γ-butyrolactone, 3-methyl-1-butanol, and 2-phenylethanol in aqueous solution. Headspace solid-phase microextraction/gas chromatography and diffusion-ordered nuclear magnetic resonance techniques were used to obtain information on aroma-food matrix interaction. Results demonstrated that adding polyols at final low concentrations of 5% or 10% (w/w) to an aqueous solution of 2-phenylethanol reduced the release of vapor-phase aromas, except in the case of 3-methyl-1-butanol, which was not affected by the presence of polyols in the liquid matrix. Polyols also reduced the diffusion coefficients of all three aroma compounds, probably due to friction between the molecules. At low polyol concentrations, aroma compound volatility and diffusion coefficient values were altered compared to those of aromas released from pure water. This observation is related to the physicochemical properties of the aroma compounds. These insights may help guide the use of the combination of aroma compounds and polyols in the formulation of sugar-free and reduced-sugar beverages. Chemical compounds: γ-butyrolactone (PubChem CID: 7302), 3-methyl-1-butanol (PubChem CID: 31260), 2-phenylethanol (PubChem CID: 6054), erythritol (PubChem CID: 222285), d-mannitol (PubChem CID: 6251), maltitol (PubChem CID: 493591).

2.
Foods ; 12(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37444322

ABSTRACT

The aim of the study was to determine the profile of bioactive compounds in cocoa residues (mucilage and bean shells), and to evaluate their antioxidant activity in two cocoa varieties, Nacional X Trinitario type (Fine Aroma) and the variety CCN-51. The extraction of phytonutrients from the residues was carried out selectively. The characterization and quantification of the total polyphenol content (TPC), and the total flavonoid content (TFC) were determined by UV-VIS spectrophotometry. High-performance liquid chromatography (HPLC) was used to determine the phenolic profile and methylxanthines. The antioxidant activity was evaluated by the methods of 2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) cation bleaching (ABTS), ferric-reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC). The exudate mucilage samples from Nacional X Trinitario-type cocoa presented the highest content of TPC 105.08 mg gallic acid equivalents (GAE)/100 mL, TFC 36.80 mg catechin equivalents (CE)/100 mL, catechin (CAT) 35.44 mg/g, procyanidins (PCB2: 35.10; PCB1: 25.68; PCC1: 16.83 mg/L), epicatechin (EPI) 13.71 mg/L, caffeine (CAF) 0.90% and theobromine (TBR) 2.65%. In the cocoa bean shell, the variety CCN-51 presented a higher content of TPC (42.17 mg GAE/100 g) and TFC (20.57 mg CE/100 g). However, CAT (16.16 mg/g), CAF (0.35%) and TBR (1.28%) were higher in the Nacional X Trinitario cocoa type. The EPI presented no significant differences between the two samples studied (0.83 and 0.84 mg/g). The antioxidant activity values (ABTS, FRAP and ORAC methods) were higher in the samples of CCN-51 than in the Nacional X Trinitario type. The bean shell samples presented antioxidant values of 171.32, 192.22 and 56.87 mg Trolox equivalents (TE)/g, respectively, and the bean shell samples presented antioxidant values of 167.06, 160.06 and 52.53 mg TE/g, respectively. The antioxidant activity (ABTS, FRAP and ORAC) of the residues was correlated with the bioactive compounds of the mucilage and bean shells, showing a strong positive correlation (<0.99) with the procyanidins (B1, B2 and C1), EPI and CAT and a positive/moderate correlation (0.94) with methylxanthines.

3.
Plants (Basel) ; 9(8)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823664

ABSTRACT

Andean blackberries (Rubus glaucus Benth) are fruits rich in phytocomponents with high antioxidant activity. In this work, the changes in the total polyphenol content (TPC), the total flavonoid content (TFC), and the total anthocyanin content (TAC) of four blackberry varieties at three maturity stages (E1-25%, E2-50%, and E3-100%) were measured. The antioxidant activity (AA) was evaluated using the 2,2'azinobis-(3-ethylbenzthiazolin 6-sulphonic acid (ABTS) and ferric reducing antioxidant power (FRAP) methods. TPC and TFC content decreased with the increase in the maturity stage. The blackberry Brazos cultivar presented TPC values of 51.26, 38.16, and 31.59 mg of gallic acid equivalents (GAE)/g dry weight (DW) at E1, E2, and E3, respectively. The TAC and soluble solids increased with the increase in the maturity stage of the fruits. The Andimora variety at E3 presented a high TPC content, and the Colombiana variety presented a high TFC content. The blackberry Colombiana cultivar presented TAC values of 1.40, 2.95, and 12.26 mg cy-3-glu/100g DW at E1, E2, and E3, respectively. The blackberry Colombiana cultivar presented a high AA value at 1278.63 µmol TE/g DW according to the ABTS method and 1284.55 µmol TE/g DW according to the FRAP method. The TPC and TFC showed a high correlation with the AA according to the ABTS and the FRAP methods. The Pearson correlation between the TFC and AA/ABTS has a value of r = 0.92. The TFC and AA/FRAP present a value of r = 0.94.

4.
Plants (Basel) ; 9(7)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610590

ABSTRACT

Crop productivity and food quality are affected by environmental conditions. The objective of this work was to evaluate the effect of the environment on the concentration of phytochemical components in several potato (Solanum tuberosum) cultivars. The content of vitamin C (ascorbic acid, AA), the total carotenoids content (TCC), the total polyphenols content (TPC), and the total anthocyanins content (TAC) of 11 potatoes varieties grown in Ecuador (Cutuglahua, Pujilí, and Pilahuín) was measured by the spectrophotometric method. The antioxidant capacity (AC) of potato cultivars was evaluated by the ABTS method. The AA concentration ranged between 12.67 to 39.49 mg/100g fresh weight (FW), the TCC ranged between 50.00 and 1043.50 µg/100g FW, the TPC ranged between 0.41 and 3.25 g of gallic acid equivalents (GAE)/kg dry weight (DW), the TAC ranged between 2.74 and 172.53 µg/g FW and finally the AC ranged between 36.80 and 789.19 µg of trolox equivalents (TE)/g FW. Genotypes (G), location (L), and interaction (G x L) were significant at p < 0.01. The genotype (G) showed a greater variation in the phytochemical contents. AA and TPC showed the highest correlation with the AC. A selection of genotypes with these characteristics can be used to develop germplasms with a high AC.

5.
Foods ; 8(8)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31349551

ABSTRACT

Anthocyanins, carotenoids and polyphenols are biomolecules that give the characteristic color to fruits. Carotenoids relate to yellow, orange and red colors whereas anthocyanins and polyphenols mainly relate to purple and red colors. Presently, standard determination of antioxidants is carried out using relatively complex methods and techniques. The aim of this study was to develop a mathematical prediction model to relate the internal color parameters of the Amazonic fruits araza (Eugenia stipitata Mc Vaugh), Andean fruit blackberry (Rubus glaucus Benth), Andean blueberry (Vaccinium floribundum Kunth), goldenberry (Physalis peruviana L.), naranjilla (Solanum quitoense Lam.), and tamarillo (Solanum betaceum Cav.) to their respective anthocyanins, carotenoids and polyphenols contents. The mathematical model was effective in predicting the total anthocyanins content (TAC), the total carotenoids content (TCC) and finally the total phenolic content (TPC) of fruits assayed. Andean blueberry presented a TPC with an experimental value of 7254.62 (mg GAE/100 g sample) with respect to a TPC prediction value of 7315.73 (mg GAE/100 g sample). Andean blackberry presented a TAC with an experimental value of 1416.69 (mg chloride cyanidin 3-glucoside/100 g) with respect to a prediction TAC value of 1413 (mg chloride cyanidin 3-glucoside/100 g).

SELECTION OF CITATIONS
SEARCH DETAIL
...