Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(24): 16869-16887, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38088830

ABSTRACT

Corramycin 1 is a novel zwitterionic antibacterial peptide isolated from a culture of the myxobacterium Corallococcus coralloides. Though Corramycin displayed a narrow spectrum and modest MICs against sensitive bacteria, its ADMET and physchem profile as well as its high tolerability in mice along with an outstanding in vivo efficacy in an Escherichia coli septicemia mouse model were promising and prompted us to embark on an optimization program aiming at enlarging the spectrum and at increasing the antibacterial activities by modulating membrane permeability. Scanning the peptidic moiety by the Ala-scan strategy followed by key stabilization and introduction of groups such as a primary amine or siderophore allowed us to enlarge the spectrum and increase the overall developability profile. The optimized Corramycin 28 showed an improved mouse IV PK and a broader spectrum with high potency against key Gram-negative bacteria that translated into excellent efficacy in several in vivo mouse infection models.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Mice , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria , Bacteria , Microbial Sensitivity Tests
2.
Eur J Pharmacol ; 915: 174670, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34863995

ABSTRACT

Hydroxychloroquine (HCQ) is a derivative of the antimalaria drug chloroquine primarily prescribed for autoimmune diseases. Recent attempts to repurpose HCQ in the treatment of corona virus disease 2019 has raised concerns because of its propensity to prolong the QT-segment on the electrocardiogram, an effect associated with increased pro-arrhythmic risk. Since chirality can affect drug pharmacological properties, we have evaluated the functional effects of the R(-) and S(+) enantiomers of HCQ on six ion channels contributing to the cardiac action potential and on electrophysiological parameters of isolated Purkinje fibers. We found that R(-)HCQ and S(+)HCQ block human Kir2.1 and hERG potassium channels in the 1 µM-100 µM range with a 2-4 fold enantiomeric separation. NaV1.5 sodium currents and CaV1.2 calcium currents, as well as KV4.3 and KV7.1 potassium currents remained unaffected at up to 90 µM. In rabbit Purkinje fibers, R(-)HCQ prominently depolarized the membrane resting potential, inducing autogenic activity at 10 µM and 30 µM, while S(+)HCQ primarily increased the action potential duration, inducing occasional early afterdepolarization at these concentrations. These data suggest that both enantiomers of HCQ can alter cardiac tissue electrophysiology at concentrations above their plasmatic levels at therapeutic doses, and that chirality does not substantially influence their arrhythmogenic potential in vitro.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Heart/drug effects , Hydroxychloroquine/chemistry , Hydroxychloroquine/pharmacology , Ion Channels/drug effects , Action Potentials/drug effects , Animals , Arrhythmias, Cardiac/chemically induced , Electrocardiography , Electrophysiologic Techniques, Cardiac , Ether-A-Go-Go Potassium Channels , Humans , Membrane Potentials/drug effects , Patch-Clamp Techniques , Purkinje Fibers/drug effects , Rabbits , Stereoisomerism
3.
J Med Chem ; 58(1): 362-75, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25369539

ABSTRACT

The Aurora family of serine/threonine kinases is essential for mitosis. Their crucial role in cell cycle regulation and aberrant expression in a broad range of malignancies have been demonstrated and have prompted intensive search for small molecule Aurora inhibitors. Indeed, over 10 of them have reached the clinic as potential anticancer therapies. We report herein the discovery and optimization of a novel series of tricyclic molecules that has led to SAR156497, an exquisitely selective Aurora A, B, and C inhibitor with in vitro and in vivo efficacy. We also provide insights into its mode of binding to its target proteins, which could explain its selectivity.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinases/antagonists & inhibitors , Benzimidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Quinolones/pharmacology , Small Molecule Libraries/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/chemistry , Aurora Kinase A/metabolism , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/chemistry , Aurora Kinase B/metabolism , Aurora Kinase C/antagonists & inhibitors , Aurora Kinase C/chemistry , Aurora Kinase C/metabolism , Aurora Kinases/chemistry , Aurora Kinases/metabolism , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Female , HCT116 Cells , Humans , Mice, SCID , Models, Chemical , Models, Molecular , Molecular Structure , Neoplasms/drug therapy , Neoplasms/pathology , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Quinolones/chemistry , Quinolones/metabolism , Sf9 Cells , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Xenograft Model Antitumor Assays
4.
J Med Chem ; 55(10): 4788-805, 2012 May 24.
Article in English | MEDLINE | ID: mdl-22524426

ABSTRACT

Most of the phosphoinositide-3 kinase (PI3K) kinase inhibitors currently in clinical trials for cancer treatment exhibit pan PI3K isoform profiles. Single PI3K isoforms differentially control tumorigenesis, and PI3Kß has emerged as the isoform involved in the tumorigenicity of PTEN-deficient tumors. Herein we describe the discovery and optimization of a new series of benzimidazole- and benzoxazole-pyrimidones as small molecular mass PI3Kß-selective inhibitors. Starting with compound 5 obtained from a one-pot reaction via a novel intermediate 1, medicinal chemistry optimization led to the discovery of compound 8, which showed a significant activity and selectivity for PI3Kß and adequate in vitro pharmacokinetic properties. The X-ray costructure of compound 8 in PI3Kδ showed key interactions and structural features supporting the observed PI3Kß isoform selectivity. Compound 8 achieved sustained target modulation and tumor growth delay at well tolerated doses when administered orally to SCID mice implanted with PTEN-deficient human tumor xenografts.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Benzoxazoles/chemical synthesis , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , PTEN Phosphohydrolase/deficiency , Pyrimidinones/chemical synthesis , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Benzoxazoles/pharmacokinetics , Benzoxazoles/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Fibroblasts/drug effects , Fibroblasts/enzymology , Humans , Isoenzymes/antagonists & inhibitors , Macrophages/drug effects , Macrophages/enzymology , Mice , Mice, SCID , Models, Molecular , Molecular Structure , Neoplasms, Experimental/enzymology , Neoplasms, Experimental/pathology , Phosphorylation , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidinones/pharmacokinetics , Pyrimidinones/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...