Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-37294416

ABSTRACT

Cholangiocarcinoma (CCA), a bile duct cancer with a high mortality rate, has a poor prognosis due to its highly invasive and drug-resistant phenotypes. More effective and selective therapies are urgently needed. Bacteriocins are broad-spectrum antimicrobial peptides/proteins produced by bacterial strains to compete with other bacteria. Recent studies have reported that bacteriocins exhibit anticancer properties against various cancer cell lines with minimal toxicity toward normal cells. In this study, two types of recombinant bacteriocins, rhamnosin from probiotic Lacticaseibacillus rhamnosus and lysostaphin from Staphylococcus simulans, were highly produced in Escherichia coli and subsequently purified via immobilized-Ni2+ affinity chromatography. When their anticancer activity was investigated against CCA cell lines, both rhamnosin and lysostaphin were found capable of inhibiting the growth of CCA cell lines in a dose-dependent fashion but were less toxic toward a normal cholangiocyte cell line. Rhamnosin and lysostaphin as single treatments could suppress the growth of gemcitabine-resistant cell lines to the same extent as or more than they suppressed the parental counterparts. A combination of both bacteriocins more strongly inhibited growth and enhanced cell apoptosis in both parental and gemcitabine-resistant cells partly through the increased expression of the proapoptotic genes BAX, and caspase-3, -8, and -9. In conclusion, this is the first report to demonstrate an anticancer property of rhamnosin and lysostaphin. Using these bacteriocins as single agents or in combination would be effective against drug-resistant CCA.

2.
Protein Expr Purif ; 210: 106320, 2023 10.
Article in English | MEDLINE | ID: mdl-37301245

ABSTRACT

The native Cry4Aa δ-endotoxin produced exclusively in Bacillus thuringiensis during sporulation as a ∼130-kDa inactive protoxin is confined within the parasporal crystalline inclusion that dissolves at alkaline pH in the midgut lumen of mosquito larvae. Here, the recombinant Cry4Aa toxin over-expressed in Escherichia coli at 30 °C as an alkaline-solubilizable inclusion was found inevitably lost during isolation from the cell lysate (pH ∼6.5) of which host cells were pre-suspended in distilled water (pH ∼5.5). When 100 mM KH2PO4 (pH 5.0) was used as host cell-suspending buffer, the cell lysate's pH became more acidic (pH 5.5), allowing the expressed protoxin to be entirely retained in the form of crystalline inclusion rather than a soluble form, and thus high-yield recovery of the partially purified inclusion was obtained. Upon dialysis of the alkaline-solubilized protoxin against the KH2PO4 buffer, the protoxin precipitate was efficiently recovered and still exhibited high toxicity to Aedes aegypti mosquito larvae. Additionally, the precipitated protoxin was completely resolubilized in 50 mM Na2CO3 buffer (pH 9.0) and proteolytically processed by trypsin to produce the 65-kDa activated toxin comprising ∼47- and ∼20-kDa fragments. In silico structural analysis suggested that His154, His388, His536 and His572 were involved in a dissolution of the Cry4Aa inclusion at pH 6.5, conceivably through interchain salt bridge breakage. Altogether, such an optimized protocol described herein was effective for the preparation of alkaline-solubilizable inclusions of the recombinant Cry4Aa toxin in large amounts (>25 mg per liter culture) that would pave the way for further structure-function relationship studies of different Cry toxins.


Subject(s)
Bacillus thuringiensis , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/chemistry , Escherichia coli/genetics , Renal Dialysis , Endotoxins/genetics , Larva , Hemolysin Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/chemistry
3.
Biochem Biophys Res Commun ; 668: 111-117, 2023 08 06.
Article in English | MEDLINE | ID: mdl-37245291

ABSTRACT

Lysostaphin endopeptidase cleaves pentaglycine cross-bridges found in staphylococcal cell-wall peptidoglycans and proves very effective in combatting methicillin-resistant Staphylococcus aureus. Here, we revealed the functional importance of two loop residues, Tyr270 in loop 1 and Asn372 in loop 4, which are highly conserved among the M23 endopeptidase family and are found close to the Zn2+-coordinating active site. Detailed analyses of the binding groove architecture together with protein-ligand docking showed that these two loop residues potentially interact with the docked ligand-pentaglycine. Ala-substituted mutants (Y270A and N372A) were generated and over-expressed in Escherichia coli as a soluble form at levels comparable to the wild type. A drastic decrease in staphylolytic activity against S. aureus was observed for both mutants, suggesting an essential role of the two loop residues in lysostaphin function. Further substitutions with an uncharged polar Gln side-chain revealed that only the Y270Q mutation caused a dramatic reduction in bioactivity. In silico predicting the effect of binding site mutations revealed that all mutations displayed a large ΔΔGbind value, signifying requirements of the two loop residues for efficient binding to pentaglycine. Additionally, MD simulations revealed that Y270A and Y270Q mutations induced large flexibility of the loop 1 region, showing markedly increased RMSF values. Further structural analysis suggested that Tyr270 conceivably participated in the oxyanion stabilization of the enzyme catalysis. Altogether, our present study disclosed that two highly conserved loop residues, loop 1-Tyr270 and loop 4-Asn372, located near the lysostaphin active site are crucially involved in staphylolytic activity toward binding and catalysis of pentaglycine cross-links.


Subject(s)
Lysostaphin , Methicillin-Resistant Staphylococcus aureus , Lysostaphin/chemistry , Lysostaphin/metabolism , Lysostaphin/pharmacology , Staphylococcus aureus , Catalytic Domain , Ligands , Endopeptidases/genetics , Endopeptidases/metabolism , Catalysis
4.
Toxins (Basel) ; 14(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36287921

ABSTRACT

The three-domain Cry4Aa toxin produced from Bacillus thuringiensis subsp. israelensis was previously shown to be much more toxic to Culex mosquito larvae than its closely related toxin-Cry4Ba. The interaction of these two individual toxins with target receptors on susceptible larval midgut cells is likely to be the critical determinant in their differential toxicity. Here, two full-length membrane-bound alkaline phosphatase (mALP) isoforms from Culex quinquefasciatus larvae, Cq-mALP1263and Cq-mALP1264, predicted to be GPI-linked was cloned and functionally expressed in Spodoptera frugiperda (Sf9) cells as 57- and 61-kDa membrane-bound proteins, respectively. Bioinformatics analysis disclosed that both Cq-mALP isoforms share significant sequence similarity to Aedes aegypti-mALP-a Cry4Ba toxin receptor. In cytotoxicity assays, Sf9 cells expressing Cq-mALP1264, but not Cq-mALP1263, showed remarkably greater susceptibility to Cry4Aa than Cry4Ba, while immunolocalization studies revealed that both toxins were capable of binding to each Cq-mALP expressed on the cell membrane surface. Molecular docking of the Cq-mALP1264-modeled structure with individual Cry4 toxins revealed that Cry4Aa could bind to Cq-mALP1264 primarily through particular residues on three surface-exposed loops in the receptor-binding domain-DII, including Thr512, Tyr513 and Lys514 in the ß10-ß11loop. Dissimilarly, Cry4Ba appeared to utilize only certain residues in its C-terminal domain-DIII to interact with such a Culex counterpart receptor. Ala-substitutions of selected ß10-ß11loop residues (T512A, Y513A and K514A) revealed that only the K514A mutant displayed a drastic decrease in biotoxicity against C. quinquefasciatus larvae. Further substitution of Lys514 with Asp (K514D) revealed a further decrease in larval toxicity. Furthermore, in silico calculation of the binding affinity change (ΔΔGbind) in Cry4Aa-Cq-mALP1264 interactions upon these single-substitutions revealed that the K514D mutation displayed the largest ΔΔGbind value as compared to three other mutations, signifying an adverse impact of a negative charge at this critical receptor-binding position. Altogether, our present study has disclosed that these two related-Cry4 mosquito-active toxins conceivably exploited different domains in functional binding to the same Culex membrane-bound ALP isoform-Cq-mALP1264 for mediating differential toxicity against Culex target larvae.


Subject(s)
Aedes , Bacillus thuringiensis , Culex , Animals , Bacillus thuringiensis Toxins , Culex/metabolism , Hemolysin Proteins/genetics , Endotoxins/toxicity , Endotoxins/chemistry , Larva/metabolism , Alkaline Phosphatase/metabolism , Molecular Docking Simulation , Bacterial Proteins/genetics , Bacterial Proteins/toxicity , Bacterial Proteins/chemistry , Bacillus thuringiensis/genetics , Aedes/genetics , Protein Isoforms
5.
Biochem Biophys Res Commun ; 620: 158-164, 2022 09 10.
Article in English | MEDLINE | ID: mdl-35797735

ABSTRACT

The insecticidal nature of Cry δ-endotoxins produced by Bacillus thuringiensis is generally attributed to their ability to form transmembrane pores, causing lysis of target insect cells. Previously, the truncated tertiary structure of the chymotrypsin-treated Cry4Ba toxin lacking the N-terminal helices-α1 and α2 was reported. To elucidate a more complete functional structure, a 65-kDa trypsin-activated form of the Cry4Ba-R203Q mutant toxin was thus generated for X-ray crystallography by eliminating the Arg203-tryptic cleavage site. The 2.0 Å crystal structure of Cry4Ba-R203Q with R-factor of 21.5% and Rfree of 23.7.%, as subsequently improved with homology-based modeling and molecular dynamics (MD) simulations, revealed a wedge-shaped arrangement of three domains: a well-defined N-terminal domain of eight α-helices (α1, α2a, α2b, α3, α4, α5, α6 and α7) responsible for pore formation, a three-ß-sheet prism displaying two functional motifs and a C-terminal ß-sandwich domain. A full-atom structural model of the Cry4Ba pre-pore trimer constructed using a single-particle 3D-reconstructed template revealed that each toxin monomer forms the stable trimer by packing α3 and α4 together at the central interface. When MD simulations of a membrane-associated trimeric pore model comprising three α4-loop-α5 hairpins were performed, an stable open-pore structure at the membrane-water interface was clearly observed. Two conserved side-chains-Asn166 and Tyr170 in the α4-α5 loop were found to interact directly with phospholipid head groups, leading to pore opening and stability. Overall data provide the first complete view of the 3D structure of the Cry4Ba mosquito-active toxin and its trimeric pore architecture, underlining the importance of two critical loop residues-Asn166 and Tyr170.


Subject(s)
Bacillus thuringiensis , Endotoxins , Animals , Bacillus thuringiensis/chemistry , Bacillus thuringiensis Toxins , Bacterial Proteins/chemistry , Endotoxins/chemistry , Hemolysin Proteins/chemistry
6.
Toxins (Basel) ; 13(8)2021 08 09.
Article in English | MEDLINE | ID: mdl-34437424

ABSTRACT

In addition to the receptor-binding domain (DII), the C-terminal domain (DIII) of three-domain Cry insecticidal δ-endotoxins from Bacillus thuringiensis has been implicated in target insect specificity, yet its precise mechanistic role remains unclear. Here, the 21 kDa high-purity isolated DIII fragment derived from the Cry4Ba mosquito-specific toxin was achieved via optimized preparative FPLC, allowing direct rendering analyses for binding characteristics toward its target receptor-Aedes aegypti membrane-bound alkaline phosphatase (Aa-mALP). Binding analysis via dotblotting revealed that the Cry4Ba-DIII truncate was capable of specific binding to nitrocellulose-bound Aa-mALP, with a binding signal comparable to its 65 kDa Cry4Ba-R203Q full-length toxin. Further determination of binding affinity via sandwich ELISA revealed that Cry4Ba-DIII exhibited a rather weak binding to Aa-mALP with a dissociation constant (Kd) of ≈1.1 × 10-7 M as compared with the full-length toxin. Intermolecular docking between the Cry4Ba-R203Q active toxin and Aa-mALP suggested that four Cry4Ba-DIII residues, i.e., Glu522, Asn552, Asn576, and Leu615, are potentially involved in such toxin-receptor interactions. Ala substitutions of each residue (E522A, N552A, N576A and L615A) revealed that only the L615A mutant displayed a drastic decrease in biotoxicity against A. aegypti larvae. Additional binding analysis revealed that the L615A-impaired toxin also exhibited a reduction in binding capability to the surface-immobilized Aa-mALP receptor, while two bio-inactive DII-mutant toxins, Y332A and F364A, which almost entirely lost their biotoxicity, apparently retained a higher degree of binding activity. Altogether, our data disclose a functional importance of the C-terminal domain of Cry4Ba for serving as a potential receptor-binding moiety in which DIII-Leu615 could conceivably be exploited for the binding to Aa-mALP, highlighting its contribution to toxin interactions with such a target receptor in mediating larval toxicity.


Subject(s)
Alkaline Phosphatase/metabolism , Bacillus thuringiensis Toxins/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insect Proteins/metabolism , Aedes , Animals , Bacillus thuringiensis Toxins/genetics , Endotoxins/genetics , Escherichia coli/genetics , Hemolysin Proteins/genetics , Insect Control , Insecticides , Molecular Docking Simulation , Pest Control, Biological , Protein Domains
7.
Biochim Biophys Acta Proteins Proteom ; 1869(6): 140634, 2021 06.
Article in English | MEDLINE | ID: mdl-33636413

ABSTRACT

One proposed toxic mechanism of Bacillus thuringiensis Cry δ-endotoxins involves pore formation in target membranes by the α4-α5 transmembrane hairpin constituting their pore-forming domain. Here, nine selected charged and uncharged polar residues in the pore-lining α4 of the Cry4Aa mosquito-active toxin were substituted with Ala. All mutant toxins, i.e., D169A, R171A, Q173A, H178A, Y179A, H180A, Q182A, N183A and E187A, were over-expressed in Escherichia coli as 130-kDa protoxin inclusions at levels comparable to the wild-type toxin. Bioassays against Aedes aegypti larvae revealed that only H178A and H180A mutants displayed a drastic reduction in biotoxicity, albeit almost complete insolubility observed for H178A, but not for H180A inclusions. Further mutagenic analysis showed that replacements of His180 with charged (Arg, Lys, Asp, Glu), small uncharged polar (Ser, Cys) or small non-polar (Gly, Val) residues severely impaired the biotoxicity, unlike substitutions with relatively large uncharged (Asn, Gln, Leu) or aromatic (Phe, Tyr, Trp) residues. Similar to the trypsin-activated wild-type toxin, both bio-active and -inactive H180 mutants were still capable of releasing entrapped calcein from lipid vesicles and producing cation-selective channels with ~130-pS maximum conductance. Analysis of the Cry4Aa structure revealed the existence of a hydrophobic cavity near the critical His180 side-chain. Analysis of simulated structures revealed that His180-to-smaller residue conversions create a gap disrupting such cavity's hydrophobicity and hence structural arrangements of the α4-α5 hairpin. Altogether, our data disclose a critical involvement in Cry4Aa-biotoxicity of His180 exclusively present in the lumen-facing α4 for providing proper environment for the α4-α5 hairpin prior to membrane-inserted pore formation.


Subject(s)
Aedes/growth & development , Bacillus thuringiensis Toxins/chemistry , Bacillus thuringiensis Toxins/toxicity , Bacillus thuringiensis/metabolism , Endotoxins/chemistry , Endotoxins/toxicity , Hemolysin Proteins/chemistry , Hemolysin Proteins/toxicity , Histidine/genetics , Aedes/drug effects , Amino Acid Substitution , Animals , Bacillus thuringiensis/chemistry , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins/genetics , Endotoxins/genetics , Fluoresceins/metabolism , Hemolysin Proteins/genetics , Hydrophobic and Hydrophilic Interactions , Larva/drug effects , Larva/growth & development , Models, Molecular , Molecular Dynamics Simulation , Protein Domains , Protein Structure, Secondary
8.
Protein Pept Lett ; 28(2): 140-148, 2021.
Article in English | MEDLINE | ID: mdl-32533816

ABSTRACT

BACKGROUND: Mature lysostaphin (~28-kDa Lss) from Staphylococcus simulans proves effective in killing methicillin-resistant Staphylococcus aureus (MRSA) which is endemic in hospitals worldwide. Lss is Zn2+-dependent endopeptidase, but its bacteriolytic activity could be affected by exogenously added Zn2+. OBJECTIVE: To gain greater insights into structural and functional impacts of Zn2+and Ni2+on Lss-induced bioactivity. METHODS: Lss purified via immobilized metal ion-affinity chromatography was assessed for bioactivity using turbidity reduction assays. Conformational change of metal ion-treated Lss was examined by circular dichroism and intrinsic fluorescence spectroscopy. Co-sedimentation assay was performed to study interactions between Zn2+-treated Lss and S. aureus peptidoglycans. Metal ionbinding prediction and intermolecular docking were used to locate an extraneous Zn2+-binding site. RESULTS: A drastic decrease in Lss bioactivity against S. aureus and MRSA was revealed only when treated with Zn2+, but not Ni2+, albeit no negative effect of diethyldithiocarbamate-Zn2+-chelator on Lss-induced bioactivity. No severe conformational change was observed for Lss incubated with exogenous Zn2+ or Ni2+. Lss pre-treated with Zn2+ efficiently bound to S. aureus cell-wall peptidoglycans, suggesting non-interfering effect of exogenous metal ions on cell-wall targeting (CWT) activity. In silico analysis revealed that exogenous Zn2+, but not Ni2+, preferably interacted with a potential extraneous Zn2+-binding site (His253, Glu318 and His323) placed near the Zn2+-coordinating Lssactive site within the catalytic (CAT) domain. CONCLUSION: Our present data signify the adverse influence of exogenous Zn2+ ions on Lss-induced staphylolytic activity through the exclusive presence within the CAT domain of an extraneous inhibitory Zn2+-binding site, without affecting the CWT activity.


Subject(s)
Anti-Bacterial Agents/chemistry , Endopeptidases/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcus/enzymology , Zinc/pharmacology , Amino Acid Sequence , Anti-Bacterial Agents/administration & dosage , Endopeptidases/administration & dosage , Methicillin-Resistant Staphylococcus aureus/growth & development , Methicillin-Resistant Staphylococcus aureus/metabolism , Nickel/pharmacology , Sequence Homology
9.
Protein Pept Lett ; 28(6): 643-650, 2021.
Article in English | MEDLINE | ID: mdl-33183185

ABSTRACT

BACKGROUND: Gastric pathogen Helicobacter pylori secretes VacA cytotoxin displaying a high degree of polymorphic variations of which the highest VacA pathogenicity correlates with m1-type variant followed by VacA-m2. OBJECTIVE: To comparatively evaluate expression in Escherichia coli of the mature VacA variants (m1- and m2-types) and their 33- and 55/59-kDa domains fused with His(6) tag at N- or C-terminus. METHODS: All VacA clones expressed in E. coli TOP10™ were analyzed by SDS-PAGE and Western blotting. VacA inclusions were solubilized under native conditions (~150-rpm shaking at 37°C for 2 h in 20 mM HEPES (pH7.4) and 150 mM NaCl). Membrane-perturbing and cytotoxic activities of solubilized VacA proteins were assessed via liposome-entrapped dye leakage and resazurin- based cell viability assays, respectively. VacA binding to human gastric adenocarcinoma cells was assessed by immunofluorescence microscopy. Side-chain hydrophobicity of VacA was analyzed through modeled structures constructed by homology- and ab initio-based modeling. RESULTS: Both full-length VacA-m1 and 33-kDa domain were efficiently expressed only in the presence of N-terminal extension while its 55-kDa domain was capably expressed with either N- or Cterminal extension. Selectively enhanced expression was also observed for VacA-m2. Protein expression profiles revealed a critical period in IPTG-induced production of the 55-kDa domain with N-terminal extension unlike its C-terminal extension showing relatively stable expression. Both VacA- m1 isolated domains were able to independently bind to cultured gastric cells similar to the full- length toxin, albeit the 33-kDa domain exhibited significantly higher activity of membrane perturbation than others. Membrane-perturbing and cytotoxic activities observed for VacA-m1 appeared to be higher than those of VacA-m2. Homology-based modeling and sequence analysis suggested a potential structural impact of non-polar residues located at the N-terminus of the mature VacA toxin and its 33-kDa domain. CONCLUSION: Our data provide molecular insights into selective influence of the N-terminally added tag on efficient expression of recombinant VacA variants, signifying biochemical and biological implications of the hydrophobic stretch within the N-terminal domain.


Subject(s)
Bacterial Proteins , Recombinant Fusion Proteins , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Cell Line, Tumor , Cell Membrane/metabolism , Cell Survival/drug effects , Escherichia coli/genetics , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Stomach/cytology
10.
Arch Biochem Biophys ; 694: 108615, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33011179

ABSTRACT

We previously demonstrated that the ~130-kDa CyaA-hemolysin domain (CyaA-Hly) from Bordetella pertussis co-expressed with CyaC-acyltransferase in Escherichia coli was acylated at Lys983 and thus activated its hemolytic activity. Here, attempts were made to provide greater insights into such toxin activation via fatty-acyl modification by CyaC-acyltransferase. Non-acylated CyaA-Hly (NA/CyaA-Hly) and CyaC were separately expressed in E. coli and subsequently purified by FPLC to near homogeneity. When effects of acyl-chain length were comparatively evaluated through CyaC-esterolysis using various p-nitrophenyl (pNP) derivatives, Michaelis-Menten steady-state kinetic parameters (KM and kcat) of CyaC-acyltransferase revealed a marked preference for myristoyl (C14:0) and palmitoyl (C16:0) substrates of which catalytic efficiencies (kcat/KM) were roughly the same (~1.5 × 103 s-1mM-1). However, pNP-palmitate (pNPP) gave the highest hemolytic activity of NA/CyaA-Hly after being acylated in vitro with a range of acyl-donor substrates. LC-MS/MS analysis confirmed such CyaC-mediated palmitoylation of CyaA-Hly occurring at Lys983, denoting no requirement of an acyl carrier protein (ACP). A homology-based CyaC structure inferred a role of a potential catalytic dyad of conserved Ser30 and His33 residues in substrate esterolysis. CyaC-ligand binding analysis via molecular docking corroborated high-affinity binding of palmitate with its carboxyl group oriented toward such a dyad. Ala-substitutions of each residue (S30A or H33A) caused a drastic decrease in kcat/KM of CyaC toward pNPP, and hence its catalytic malfunction through palmitoylation-dependent activation of NA/CyaA-Hly. Altogether, our present data evidently provide such preferential palmitoylation of CyaA-Hly by CyaC-acyltransferase through the enzyme Ser30-His33 nucleophile-activation dyad in esterolysis of palmitoyl-donor substrate, particularly devoid of a natural acyl-ACP donor.


Subject(s)
Acyltransferases/chemistry , Adenylate Cyclase Toxin/chemistry , Histidine/chemistry , Palmitates/chemistry , Serine/chemistry , Acyltransferases/genetics , Acyltransferases/metabolism , Adenylate Cyclase Toxin/metabolism , Amino Acid Sequence , Bordetella pertussis/enzymology , Catalysis , Kinetics , Lipoylation , Molecular Docking Simulation , Mutagenesis, Site-Directed , Mutation , Palmitates/metabolism , Protein Binding , Sequence Alignment , Substrate Specificity
11.
Protein Expr Purif ; 175: 105696, 2020 11.
Article in English | MEDLINE | ID: mdl-32681955

ABSTRACT

Vacuolating cytotoxin A (VacA) is a highly polymorphic virulence protein produced by the human gastric pathogen Helicobacter pylori which can cause gastritis, peptic ulcer and gastric cancer. Here, we present an optimized protein preparation of the mature full-length VacA variants (m1-and m2-types) and their 33-kDa N-terminal and 55/59-kDa C-terminal domains as biologically active recombinant proteins fused with an N-terminal His(6) tag. All recombinant VacA constructs were over-expressed in Escherichia coli as insoluble inclusions which were soluble when phosphate buffer (pH 7.4) was supplemented with 5-6 M urea. Upon immobilized-Ni2+ affinity purification under 5-M urea denaturing conditions, homogenous products (>95% purity) of 55/59-kDa domains were consistently obtained while only ~80% purity of both mature VacA variants and the 33-kDa truncate was achieved, thus requiring additional purification by size-exclusion chromatography. After successive refolding via optimized stepwise dialysis, all refolded VacA proteins were proven to possess both cytotoxic and vacuolating activity against cultured human gastric epithelial cells albeit the activity observed for VacA-m2 was lower than the m1-type variant. Such an optimized protocol described herein was effective for production of high-purity recombinant VacA proteins in large amounts (~30-40 mg per liter culture) that would pave the way for further studies on sequence-structure and function relationships of different VacA variants.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Helicobacter pylori/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Toxins/biosynthesis , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Helicobacter pylori/metabolism , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
12.
Biochem Biophys Res Commun ; 514(2): 365-371, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31040022

ABSTRACT

Although the TlyA hemolysin from Helicobacter pylori has been implicated as a potential virulence factor involved in mediating host cell colonization and hence disease progression, its structural determinants underlying the biological activity are still largely uncertain. In this study, an important role of the formation of a particular disulfide bond for functional oligomeric assembly of the H. pylori TlyA toxin was evidently elucidated. The 27-kDa TlyA recombinant protein was overexpressed in Escherichia coli, subsequently purified to near homogeneity by cation exchange chromatography, and proven to be hemolytically active against sheep erythrocytes. Additionally, TlyA-induced hemolytic activity was significantly diminished under conditions of disulfide bond reduction with a thiol-reducing agent, dithiothreitol. When the purified TlyA protein was subjected to modified SDS-PAGE under non-reducing conditions, the presence of an oligomeric state of this protein was clearly revealed by its apparent molecular mass of ∼48 kDa. Recombinant E. coli cells expressing TlyA also displayed contact-dependent hemolysis of erythrocytes, suggesting TlyA localization at the bacterial outer membrane and thus supporting the formation of disulfide-bonded TlyA. Homology-based modeling and in silico structural assembly analysis of TlyA signified potential intermolecular, rather than intramolecular, disulfide bonding through Cys124 and Cys128. Subsequently, single substitution of either of these Cys residues with Ser severely affected the oligomeric assembly of both TlyA mutants and hence abolished their hemolytic activity. Altogether, our present data provide pivotal evidence that the formation of intermolecular disulfide bonding between Cys124 and Cys128 plays a critical role in structural assembly of a biologically active-TlyA oligomer.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cysteine/metabolism , Disulfides/metabolism , Helicobacter pylori , Hemolysis , Virulence Factors/chemistry , Virulence Factors/metabolism , Animals , Bacterial Proteins/analysis , Bacterial Proteins/genetics , Computer Simulation , Cysteine/chemistry , Disulfides/chemistry , Electrophoresis, Polyacrylamide Gel , Erythrocytes/pathology , Escherichia coli , Helicobacter pylori/chemistry , Helicobacter pylori/metabolism , Mutation , Oxidation-Reduction , Sheep , Virulence Factors/analysis , Virulence Factors/genetics
13.
Toxins (Basel) ; 11(2)2019 01 23.
Article in English | MEDLINE | ID: mdl-30678087

ABSTRACT

Although the C-terminal domain (DIII) of three-domain Cry insecticidal toxins from Bacillus thuringiensis has been implicated in various biological functions, its exact role still remains to be elucidated. Here, the 21-kDa isolated DIII fragment of the 65-kDa Cry4Ba mosquito-specific toxin was analyzed for its binding characteristics toward lipid-bilayer membranes. When the highly-purified Cry4Ba-DIII protein was structurally verified by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, it revealed the presence of a distinct ß-sheet structure, corresponding to its structure embodied in the Cry4Ba crystal structure. Binding analysis via surface plasmon resonance (SPR) spectroscopy revealed that the 21-kDa Cry4Ba-DIII truncate displayed tight binding to immobilized liposome membranes in a two-step manner, exhibiting a dissociation rate constant (kd) comparable to the 65-kDa full-length toxin. Also similar to the Cry4Ba full-length toxin, its isolated DIII truncate was able to anchor a part of its molecule into the immobilized membrane as the SPR signal was still detected after prolonged treatment with proteinase K. However, unlike the full-length active toxin, the DIII truncate was unable to induce membrane permeability of calcein-loaded liposomes or ion-channel formation in planar lipid bilayers. Together, our present data have disclosed a pivotal role of C-terminal DIII in serving as a membrane anchor rather than a pore-forming moiety of the Cry4Ba mosquito-active toxin, highlighting its potential mechanistic contribution to the interaction of the full-length toxin with lipid membranes in mediating toxicity.


Subject(s)
Bacterial Proteins , Endotoxins , Hemolysin Proteins , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Culicidae , Endotoxins/chemistry , Endotoxins/genetics , Endotoxins/metabolism , Hemolysin Proteins/chemistry , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Lipid Bilayers/metabolism , Protein Domains
14.
Protein Expr Purif ; 151: 106-112, 2018 11.
Article in English | MEDLINE | ID: mdl-29944958

ABSTRACT

Lysostaphin, a bacteriolytic toxin from Staphylococcus simulans, is a Zn2+-dependent endopeptidase that cleaves pentaglycine cross-bridges found in peptidoglycan of certain Staphylococci. Here, we have investigated a critical influence of Zn2+ ions on lysostaphin-induced bioactivity. Initially, we succeeded in producing a large amount with high purity of the 28-kDa His-tagged mature lysostaphin via soluble expression in Escherichia coli and subsequent purification via immobilized-Ni2+ affinity chromatography (IMAC). The purified monomeric bacteriocin exhibited concentration-dependent bioactivity against S. aureus and its methicillin-resistant strain through cell-wall hydrolysis rather than membrane perturbation. Following pre-incubation of the purified lysostaphin with exogenous Zn2+, a marked inhibition in staphylolytic activity was observed. When the pre-mixture was exposed to 1,10-phenanthroline (PNT, a Zn2+-chelator), the adverse effect of the exogenous Zn2+ on bioactivity was greatly decreased. Conversely, lysostaphin pre-treated with excess PNT retained relatively high bioactivity, indicating ineffective chelation of PNT to detach the catalytic Zn2+ from the active-site pocket. Structural analysis of the lysostaphin-catalytic domain together with amino acid sequence alignments of lysostaphin-like endopeptidases revealed a potential extraneous Zn2+-binding site found in close proximity to the Zn2+-coordinating active site. Overall our results provide more insights into an adverse influence of exogenous Zn2+ ions on staphylolytic activity of the purified Zn2+-dependent endopeptidase lysostaphin, implicating the presence of an extraneous inhibitory metal-binding site.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Lysostaphin/isolation & purification , Staphylococcus/enzymology , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Biocatalysis , Cations, Divalent , Cell Wall/metabolism , Chelating Agents/chemistry , Chelating Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Drug Resistance, Bacterial , Escherichia coli/genetics , Escherichia coli/metabolism , Lysostaphin/biosynthesis , Lysostaphin/pharmacology , Phenanthrolines/chemistry , Phenanthrolines/pharmacology , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Staphylococcus aureus/drug effects , Zinc/chemistry , Zinc/pharmacology
15.
Biochem Biophys Res Commun ; 499(4): 862-867, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29625104

ABSTRACT

Previously, we demonstrated that the ∼130-kDa CyaA-hemolysin (CyaA-Hly, Met482-Arg1706) from Bordetella pertussis was palmitoylated at Lys983 when co-expressed with CyaC-acyltransferase in Escherichia coli, and thus activated its hemolytic activity. Here, further investigation on a possible requirement of the N-terminal hydrophobic region (HP, Met482-Leu750) for toxin acylation was performed. The ∼100-kDa RTX (Repeat-in-ToXin) fragment (CyaA-RTX, Ala751-Arg1706) containing the Lys983-acylation region (AR, Ala751-Gln1000), but lacking HP, was co-produced with CyaC in E. coli. Hemolysis assay indicated that CyaA-RTX showed no hemolytic activity. Additionally, MALDI-TOF/MS and LC-MS/MS analyses confirmed that CyaA-RTX was non-acylated, although the co-expressed CyaC-acyltransferase was able to hydrolyze its chromogenic substrate-p-nitrophenyl palmitate and acylate CyaA-Hly to become hemolytically active. Unlike CyaA-RTX, the ∼70-kDa His-tagged CyaA-HP/BI fragment which is hemolytically inactive and contains both HP and AR was constantly co-eluted with CyaC during IMAC-purification as the presence of CyaC was verified by Western blotting. Such potential interactions between the two proteins were also revealed by semi-native PAGE. Moreover, structural analysis via electrostatic potential calculations and molecular docking suggested that CyaA-HP comprising α1-α5 (Leu500-Val698) can interact with CyaC through several hydrogen and ionic bonds formed between their opposite electrostatic surfaces. Overall, our results demonstrated that the HP region of CyaA-Hly is conceivably required for not only membrane-pore formation but also functional association with CyaC-acyltransferase, and hence effective palmitoylation at Lys983.


Subject(s)
Acyltransferases/metabolism , Adenylate Cyclase Toxin/chemistry , Adenylate Cyclase Toxin/metabolism , Bordetella pertussis/metabolism , Hemolysin Proteins/chemistry , Hemolysin Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Acylation , Animals , Escherichia coli/metabolism , Hemolysis , Hydrolysis , Molecular Docking Simulation , Sheep , Structure-Activity Relationship , Substrate Specificity
16.
Protein Pept Lett ; 25(3): 236-243, 2018.
Article in English | MEDLINE | ID: mdl-29205108

ABSTRACT

BACKGROUND: Adenylate cyclase (CyaA) is one of the major virulence factors of Bordetella pertussis that plays a key role in whooping cough pathogenesis. A putative transmembrane helical hairpin (α2-loop-α3), encompassing residues 529-594 of CyaA hemolysin (CyaA-Hly) domain, was previously proposed to be crucially involved in hemolytic activity against target erythrocytes. OBJECTIVE: The main objective of this study was to gain more insight into membrane permeabilization of this toxin. Membrane-permeabilizing abilities of the purified 130-kDa CyaA-Hly and synthetic peptides corresponding to the helical component of interest, were evaluated. METHODS: Synthetic peptides corresponding to the critical helical component, i.e. α2 (W528-G550), α3 (G568-R594) and α2-loop-α3 (W528-R594), were examined on various membrane models in comparison with the purified 130-kDa CyaA-Hly. The peptides were commercially synthesized and the purified toxin was obtained from recombinant plasmid construction and expression in Escherichia coli, followed by purification via immobilized-metal affinity chromatography. Membrane permeabilization or hemolysis of the peptides or the purified toxin were determined by liposomal leakage, hemolysis assays and atomic force microscopy (AFM) imaging. RESULTS: Our results showed that the truncated 130-kDa CyaA-Hly, the synthetic peptides α2, α3 and the α2-loop-α3 hairpin exhibited distinct membrane-permeabilizing capacities in different membrane models. We demonstrated that the CyaA-Hly toxin and the peptides, especially the α2 peptide, caused nonspecific liposomal leakage as monitored by fluorescence dequenching of sulforhodamine B-loaded lipid vesicles. Notably, α2 peptide showed a predominant effect of membrane permeabilization when compared to α2-loop-α3 hairpin and α3 peptides. In addition, AFM imaging demonstrates lipid membrane disruption induced by the CyaA-Hly toxin or the peptidic α2-loop-α3 hairpin. CONCLUSION: Overall, the study provides the supporting evidence that the putative helical α2-loop-α3 hairpin could interact with the lipid membranes while the helical α2 peptide strongly induced liposomal leakage and hemolysis, as compared with the helical α3 or the α2-loop-α3 peptides, suggesting that the helix 2 from the hydrophobic region of CyaA-Hly is a crucial component that contributes to membrane permeabilization.


Subject(s)
Adenylate Cyclase Toxin/chemistry , Bordetella pertussis/metabolism , Hemolysin Proteins/chemistry , Adenylate Cyclase Toxin/metabolism , Animals , Cell Membrane Permeability , Hemolysin Proteins/metabolism , Hemolysis , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers , Peptides/chemistry , Protein Domains , Protein Structure, Secondary , Sheep
17.
Curr Microbiol ; 75(2): 223-230, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29032467

ABSTRACT

The membrane perturbing action of the VacA toxin from Helicobacter pylori is responsible for vacuole formation in intracellular compartments and the induction of apoptosis. The VacA toxin contains 2 major domains, p33 and p55, which are involved in receptor binding and membrane pore formation, respectively. Improved methodologies for VacA purification and assays are urgently needed for further detailed investigations on the mechanism of action of this significant virulence factor. We found that by fusing mouse DHFR with the N-terminus of the full-length (p88) VacA toxin, expression levels in recombinant E. coli were substantially increased when compared to the conventional (His)6-tagged protein. The DHFR-VacA fusion protein was active in sulforhodamine dye-release assays using liposomes at acidic pH in a concentration-dependent manner. Enzymatic activity of DHFR in the fusion protein was comparable to a commercial reference sample of purified DHFR; however, activity was insensitive to inhibition by methotrexate. Our findings suggest that the VacA p88 toxin with a modified N-terminus still maintains its capability for membrane insertion and that pH-dependent conformational changes occur during interaction of VacA with membranes.


Subject(s)
Bacterial Proteins/metabolism , Coloring Agents/metabolism , Liposomes/metabolism , Recombinant Fusion Proteins/metabolism , Tetrahydrofolate Dehydrogenase/metabolism , Animals , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Membranes/metabolism , Mice , Recombinant Fusion Proteins/genetics , Tetrahydrofolate Dehydrogenase/genetics
18.
Toxins (Basel) ; 9(3)2017 03 16.
Article in English | MEDLINE | ID: mdl-28300777

ABSTRACT

The Bordetella pertussis CyaA-hemolysin (CyaA-Hly) domain was previously demonstrated to be an important determinant for hemolysis against target erythrocytes and ion-channel formation in planar lipid bilayers (PLBs). Here, net-charge variations in the pore-lining helix of thirteen related RTX cytolysins including CyaA-Hly were revealed by amino acid sequence alignments, reflecting their different degrees of hemolytic activity. To analyze possible functional effects of net-charge alterations on hemolytic activity and channel formation of CyaA-Hly, specific mutations were made at Gln574 or Glu581 in its pore-lining α3 of which both residues are highly conserved Lys in the three highly active RTX cytolysins (i.e., Escherichia coli α-hemolysin, Actinobacillus pleuropneumoniae toxin, and Aggregatibacter actinomycetemcomitans leukotoxin). All six constructed CyaA-Hly mutants that were over-expressed in E. coli as 126 kDa His-tagged soluble proteins were successfully purified via immobilized Ni2+-affinity chromatography. Both positive-charge substitutions (Q574K, Q574R, E581K, E581R) and negative-charge elimination (E581Q) appeared to increase the kinetics of toxin-induced hemolysis while the substitution with a negatively-charged side-chain (Q574E) completely abolished its hemolytic activity. When incorporated into PLBs under symmetrical conditions (1.0 M KCl, pH 7.4), all five mutant toxins with the increased hemolytic activity produced clearly-resolved single channels with higher open probability and longer lifetime than the wild-type toxin, albeit with a half decrease in their maximum conductance. Molecular dynamics simulations for 50 ns of a trimeric CyaA-Hly pore model comprising three α2-loop-α3 transmembrane hairpins revealed a significant role of the positive charge at both target positions in the structural stability and enlarged diameter of the simulated pore. Altogether, our present data have disclosed functional contributions of positively-charged side-chains substituted at positions Gln574 and Glu581 in the pore-lining α3 to the enhanced hemolytic activity and ion-channel opening of CyaA-Hly that actually mimics the highly-active RTX (repeat-in-toxin) cytolysins.


Subject(s)
Adenylate Cyclase Toxin/chemistry , Hemolysin Proteins/chemistry , Hemolysis , Ion Channel Gating , Adenylate Cyclase Toxin/genetics , Adenylate Cyclase Toxin/metabolism , Amino Acid Sequence , Animals , Erythrocytes , Escherichia coli/genetics , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Sequence Alignment , Sheep
19.
Biochem Biophys Res Commun ; 485(4): 720-724, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28238785

ABSTRACT

Proteolytic degradation of the ∼100-kDa isolated RTX (Repeat-in-ToXin) subdomain (CyaA-RTX) of the Bordetella pertussis CyaA-hemolysin (CyaA-Hly) was evidently detected upon solely-prolonged incubation. Here, a truncated CyaA-Hly fragment (CyaA-HP/BI) containing hydrophobic and acylation regions connected with the first RTX block (BI1015-1088) was constructed as a putative precursor for investigating its potential autocatalysis. The 70-kDa His-tagged CyaA-HP/BI fragment which was over-expressed in Escherichia coli as insoluble aggregate was entirely solubilized with 4 M urea. After re-naturation in a Ni2+-NTA affinity column, the purified-refolded CyaA-HP/BI fragment in HEPES buffer (pH 7.4) supplemented with 2 mM CaCl2 was completely degraded upon incubation at 37 °C for 3 h. Addition of 1,10-phenanthroline‒an inhibitor of Zn2+-dependent metalloproteases markedly reduced the extent of degradation for CyaA-HP/BI and CyaA-RTX, but the degradative effect was clearly enhanced by addition of 100 mM ZnCl2. Structural analysis of a plausible CyaA-HP/BI model revealed a potential Zn2+-binding His-Asp cluster located between the acylation region and RTX-BI1015-1088. Moreover, Arg997‒one of the identified cleavage sites of the CyaA-RTX fragment was located in close proximity to the Zn2+-binding catalytic site. Overall results demonstrated for the first time that the observed proteolysis of CyaA-HP/BI and CyaA-RTX fragments is conceivably due to their Zn2+-dependent autocatalytic activity.


Subject(s)
Adenylate Cyclase Toxin/metabolism , Bacterial Proteins/metabolism , Bordetella pertussis/metabolism , Hemolysin Proteins/metabolism , Zinc/metabolism , Adenylate Cyclase Toxin/chemistry , Adenylate Cyclase Toxin/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites/genetics , Biocatalysis/drug effects , Blotting, Western , Bordetella pertussis/genetics , Escherichia coli/genetics , Hemolysin Proteins/chemistry , Hemolysin Proteins/genetics , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Phenanthrolines/pharmacology , Protein Domains , Protein Precursors/chemistry , Protein Precursors/genetics , Protein Precursors/metabolism , Proteolysis/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Zinc/chemistry , Zinc/pharmacology
20.
Biochim Biophys Acta Biomembr ; 1859(3): 312-318, 2017 03.
Article in English | MEDLINE | ID: mdl-27993565

ABSTRACT

Previously, the ~130-kDa CyaA-hemolysin domain (CyaA-Hly) from Bordetella pertussis co-expressed with CyaC-acyltransferase in Escherichia coli was demonstrated to be palmitoylated at Lys983 and thus activated its hemolytic activity against target erythrocytes. Here, we report the functional importance of Lys983-palmitoylation for membrane insertion and pore formation of CyaA-Hly. Intrinsic fluorescence emissions of both non-acylated CyaA-Hly (NA/CyaA-Hly) and CyaA-Hly were indistinguishable, suggesting no severe conformational change upon acylation at Lys983. Following pre-incubation of sheep erythrocytes with NA/CyaA-Hly, there was a drastic decrease in CyaA-Hly-induced hemolysis. Direct interactions between NA/CyaA-Hly and target erythrocyte membranes were validated via membrane-binding assays along with Western blotting, suggestive of acylation-independent capability of NA/CyaA-Hly to interact with erythrocyte membranes. As compared with CyaA-Hly, NA/CyaA-Hly displayed a slower rate of incorporation into DOPC:DOPE:Ch or DiPhyPC bilayers under symmetrical conditions (1M KCl, 10mM HEPES, pH7.4) and formed channels exhibiting different conductance. Further analysis revealed that channel-open lifetime in DOPC:DOPE:Ch bilayers of NA/CyaA-Hly was much shorter than that of the acylated form, albeit slightly shorter lifetime found in DiPhyPC bilayers. Sequence alignments of the Lys983-containing CyaA-segment with those of related RTX-cytolysins revealed a number of highly conserved hydrophobic residues and a Lys/Arg cluster that is predicted be important for toxin-membrane interactions. Altogether, our data disclosed that the Lys983-linked palmitoyl group is not directly involved in either binding to target erythrocyte membranes or toxin-induced channel conductivity, but rather required for efficient membrane insertion and pore formation of the acylated CyaA-Hly domain.


Subject(s)
Adenylate Cyclase Toxin/metabolism , Bordetella pertussis/metabolism , Acylation , Adenylate Cyclase Toxin/chemistry , Adenylate Cyclase Toxin/genetics , Amino Acid Sequence , Animals , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , Hemolysis , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...