Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38798403

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease preferentially observed in females. X-linked gene expression in XX females is normalized to that of XY males by X-Chromosome Inactivation (XCI). However, B cells from female SLE patients and mouse models of SLE exhibit mislocalization of Xist RNA, a critical regulator of XCI, and aberrant expression of X-linked genes, suggesting that impairment of XCI may contribute to disease. Here, we find that a subset of female mice harboring a conditional deletion of Xis t in B cells ("Xist cKO") spontaneously develop SLE phenotypes, including expanded activated B cell subsets, disease-specific autoantibodies, and glomerulonephritis. Moreover, pristane-induced SLE-like disease is more severe in Xist cKO mice. Activated B cells from Xist cKO mice with SLE phenotypes have increased expression of proinflammatory X-linked genes implicated in SLE. Together, this work indicates that impaired XCI maintenance in B cells directly contributes to the female-bias of SLE.

2.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405871

ABSTRACT

X Chromosome Inactivation (XCI) is a female-specific process which balances X-linked gene dosage between sexes. Unstimulated T cells lack cytological enrichment of Xist RNA and heterochromatic modifications on the inactive X chromosome (Xi), and these modifications become enriched at the Xi after cell stimulation. Here, we examined allele-specific gene expression and the epigenomic profiles of the Xi following T cell stimulation. We found that the Xi in unstimulated T cells is largely dosage compensated and is enriched with the repressive H3K27me3 modification, but not the H2AK119-ubiquitin (Ub) mark, even at promoters of XCI escape genes. Upon CD3/CD28-mediated T cell stimulation, the Xi accumulates H2AK119-Ub and H3K27me3 across the Xi. Next, we examined the T cell signaling pathways responsible for Xist RNA localization to the Xi and found that T cell receptor (TCR) engagement, specifically NF-κB signaling downstream of TCR, is required. Disruption of NF-κB signaling, using inhibitors or genetic deletions, in mice and patients with immunodeficiencies prevents Xist/XIST RNA accumulation at the Xi and alters expression of some X-linked genes. Our findings reveal a novel connection between NF-κB signaling pathways which impact XCI maintenance in female T cells.

3.
Nat Rev Immunol ; 24(7): 487-502, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38383754

ABSTRACT

There are notable sex-based differences in immune responses to pathogens and self-antigens, with female individuals exhibiting increased susceptibility to various autoimmune diseases, and male individuals displaying preferential susceptibility to some viral, bacterial, parasitic and fungal infections. Although sex hormones clearly contribute to sex differences in immune cell composition and function, the presence of two X chromosomes in female individuals suggests that differential gene expression of numerous X chromosome-linked immune-related genes may also influence sex-biased innate and adaptive immune cell function in health and disease. Here, we review the sex differences in immune system composition and function, examining how hormones and genetics influence the immune system. We focus on the genetic and epigenetic contributions responsible for altered X chromosome-linked gene expression, and how this impacts sex-biased immune responses in the context of pathogen infection and systemic autoimmunity.


Subject(s)
Sex Characteristics , Humans , Female , Male , Animals , Gonadal Steroid Hormones/immunology , Gonadal Steroid Hormones/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/genetics , Epigenesis, Genetic/immunology , Chromosomes, Human, X/genetics , Genes, X-Linked , Autoimmunity/immunology , Autoimmunity/genetics , Immunity, Innate/immunology , Sex Factors , Adaptive Immunity/genetics , Adaptive Immunity/immunology
4.
J Autoimmun ; 139: 103084, 2023 09.
Article in English | MEDLINE | ID: mdl-37399593

ABSTRACT

OBJECTIVE: Systemic lupus erythematosus (SLE) is a highly female-biased systemic autoimmune disease, but the molecular basis for this female bias remains incompletely elucidated. B and T lymphocytes from patients with SLE and female-biased mouse models of SLE exhibit features of epigenetic dysregulation on the X chromosome which may contribute to this strong female bias. We therefore examined the fidelity of dynamic X-chromosome inactivation maintenance (dXCIm) in the pathogenesis of two murine models of spontaneous lupus-NZM2328 and MRL/lpr-with disparate levels of female-bias to determine whether impaired dXCIm contributes to the female bias of disease. METHODS: CD23+ B cells and CD3+ T cells were purified from age-matched C57BL/6 (B6), MRL/lpr, and NZM2328 male and female mice, activated in vitro, and processed for Xist RNA fluorescence in situ hybridization, H3K27me3 immunofluorescence imaging, qPCR, and RNA sequencing analyses. RESULTS: The dynamic relocalization of Xist RNA and the canonical heterochromatin mark, H3K27me3, to the inactive X chromosome was preserved in CD23+ B cells, but impaired in activated CD3+ T cells from the MRL/lpr model (p < 0.01 vs. B6), and even more impaired in the heavily female-biased NZM2328 model (p < 0.001 vs. B6; p < 0.05 vs. MRL/lpr). RNAseq of activated T cells from NZM2328 mice revealed the female-biased upregulation of 32 X-linked genes distributed broadly across the X chromosome, many of which have roles in immune function. Many genes encoding Xist RNA-interacting proteins were also differentially expressed and predominantly downregulated, which may account for the observed mislocalization of Xist RNA to the inactive X chromosome. CONCLUSIONS: Although evident in T cells from both the MRL/lpr and NZM2328 models of spontaneous SLE, impaired dXCIm is more severe in the heavily female-biased NZM2328 model. The aberrant X-linked gene dosage in female NZM2328 mice may contribute towards the development of female-biased immune responses in SLE-prone hosts. These findings provide important insights into the epigenetic mechanisms contributing to female-biased autoimmunity.


Subject(s)
Autoimmunity , Lupus Erythematosus, Systemic , T-Lymphocytes , X Chromosome Inactivation , T-Lymphocytes/immunology , Female , Animals , Mice , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , B-Lymphocytes/immunology , Mice, Inbred C57BL , Male , Sex Factors , Lymphocyte Activation , Disease Models, Animal , Humans , Gene Dosage , RNA, Long Noncoding/metabolism , Protein Binding , Autoimmunity/genetics
5.
Stem Cell Reports ; 18(2): 489-502, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36638790

ABSTRACT

Sex differences exist for many lung pathologies, including COVID-19 and pulmonary fibrosis, but the mechanistic basis for this remains unclear. Alveolar type 2 cells (AT2s), which play a key role in alveolar lung regeneration, express the X-linked Ace2 gene that has roles in lung repair and SARS-CoV-2 pathogenesis, suggesting that X chromosome inactivation (XCI) in AT2s might impact sex-biased lung pathology. Here we investigate XCI maintenance and sex-specific gene expression profiles using male and female AT2s. Remarkably, the inactive X chromosome (Xi) lacks robust canonical Xist RNA "clouds" and less enrichment of heterochromatic modifications in human and mouse AT2s. We demonstrate that about 68% of expressed X-linked genes in mouse AT2s, including Ace2, escape XCI. There are genome-wide expression differences between male and female AT2s, likely influencing both lung physiology and pathophysiologic responses. These studies support a renewed focus on AT2s as a potential contributor to sex-biased differences in lung disease.


Subject(s)
COVID-19 , RNA, Long Noncoding , Female , Male , Humans , Mice , Animals , X Chromosome Inactivation/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Genes, X-Linked , COVID-19/genetics , SARS-CoV-2/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcriptome
7.
J Exp Med ; 219(6)2022 06 06.
Article in English | MEDLINE | ID: mdl-35510951

ABSTRACT

Sexual dimorphism in the composition and function of the human immune system has important clinical implications, as males and females differ in their susceptibility to infectious diseases, cancers, and especially systemic autoimmune rheumatic diseases. Both sex hormones and the X chromosome, which bears a number of immune-related genes, play critical roles in establishing the molecular basis for the observed sex differences in immune function and dysfunction. Here, we review our current understanding of sex differences in immune composition and function in health and disease, with a specific focus on the contribution of the X chromosome to the striking female bias of three autoimmune rheumatic diseases.


Subject(s)
Autoimmune Diseases , Rheumatic Diseases , Female , Humans , Male , Sex Characteristics
8.
Annu Rev Nutr ; 42: 251-274, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35436418

ABSTRACT

Long noncoding RNAs (lncRNAs) are sensitive to changing environments and play key roles in health and disease. Emerging evidence indicates that lncRNAs regulate gene expression to shape metabolic processes in response to changing nutritional cues. Here we review various lncRNAs sensitive to fasting, feeding, and high-fat diet in key metabolic tissues (liver, adipose, and muscle), highlighting regulatory mechanisms that trigger expression changes of lncRNAs themselves, and how these lncRNAs regulate gene expression of key metabolic genes in specific cell types or across tissues. Determining how lncRNAs respond to changes in nutrition is critical for our understanding of the complex downstream cascades following dietary changes and can shape how we treat metabolic disease. Furthermore, investigating sex biases that might influence lncRNA-regulated responses will likely reveal contributions toward the observed disparities between the sexes in metabolic diseases.


Subject(s)
RNA, Long Noncoding , Cues , Fasting , Humans , Metabolic Networks and Pathways , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
9.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article in English | MEDLINE | ID: mdl-34103397

ABSTRACT

Systemic lupus erythematous (SLE) is a female-predominant disease characterized by autoimmune B cells and pathogenic autoantibody production. Individuals with two or more X chromosomes are at increased risk for SLE, suggesting that X-linked genes contribute to the observed sex bias of this disease. To normalize X-linked gene expression between sexes, one X in female cells is randomly selected for transcriptional silencing through X-chromosome inactivation (XCI), resulting in allele-specific enrichment of epigenetic modifications, including histone methylation and the long noncoding RNA XIST/Xist on the inactive X (Xi). As we have previously shown that epigenetic regulation of the Xi in female lymphocytes from mice is unexpectedly dynamic, we used RNA fluorescence in situ hybridization and immunofluorescence to profile epigenetic features of the Xi at the single-cell level in human B cell subsets from pediatric and adult SLE patients and healthy controls. Our data reveal that abnormal XCI maintenance in B cells is a feature of SLE. Using single-cell and bulk-cell RNA sequencing datasets, we found that X-linked immunity genes escape XCI in specific healthy human B cell subsets and that human SLE B cells exhibit aberrant expression of X-linked genes and XIST RNA interactome genes. Our data reveal that mislocalized XIST RNA, coupled with a dramatic reduction in heterochromatic modifications at the Xi in SLE, predispose for aberrant X-linked gene expression from the Xi, thus defining a genetic and epigenetic pathway that affects X-linked gene expression in human SLE B cells and likely contributes to the female bias in SLE.


Subject(s)
B-Lymphocytes/metabolism , Chromosomes, Human, X/genetics , Epigenesis, Genetic , Lupus Erythematosus, Systemic/genetics , X Chromosome Inactivation/genetics , Adolescent , Adult , Alleles , Child , Gene Expression Profiling , Heterochromatin/metabolism , Histones/metabolism , Humans , Lymphocyte Subsets/metabolism , Lysine/metabolism , Methylation , Middle Aged , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ubiquitin/metabolism , Young Adult
10.
Curr Opin Physiol ; 19: 62-72, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33073073

ABSTRACT

Females have more robust immune responses than males, and viral infections are more severe for males. Hormones and genetic sex, namely the X chromosome, influence sex differences with immune responses. Here, we review recent findings underlying sexual dimorphism of disease susceptibility for two prevalent viral infections, influenza and SARS-CoV-2, which exhibit male-biased disease severity. Viral infections are proposed to be an initiating event for autoimmunity, which exhibits a female bias. We also review recent work elucidating the epigenetic and genetic contribution of X-Chromosome Inactivation maintenance, and X-linked gene expression, for the autoimmune disorder Systemic Lupus Erythematosus, and highlight the complex considerations required for identifying underlying hormonal and genetic contributions responsible for sex differences in immune responses.

11.
Epigenetics ; 16(12): 1295-1305, 2021 12.
Article in English | MEDLINE | ID: mdl-33300436

ABSTRACT

Genomic imprinting is a rare form of gene expression in mammals in which a small number of genes are expressed in a parent-of-origin-specific manner. The aetiology of human imprinting disorders is diverse and includes chromosomal abnormalities, mutations, and epigenetic dysregulation of imprinted genes. The most common human imprinting disorder is Beckwith-Wiedemann syndrome (BWS), frequently caused by uniparental isodisomy and DNA methylation alterations. Because these lesions cannot be easily engineered, induced pluripotent stem cells (iPSC) are a compelling alternative. Here, we describe the first iPSC model derived from patients with BWS. Due to the mosaic nature of BWS patients, both BWS and non-BWS iPSC lines were derived from the same patient's fibroblasts. Importantly, we determine that DNA methylation and gene expression patterns of the imprinted region in the iPSC lines reflect the parental cells and are stable over time. Additionally, we demonstrate that differential expression in insulin signalling, cell proliferation, and cell cycle pathways was seen in hepatocyte lineages derived from BWS lines compared to controls. Thus, this cell based-model can be used to investigate the role of imprinting in the pathogenesis of BWS in disease-relevant cell types.


Subject(s)
Beckwith-Wiedemann Syndrome , Beckwith-Wiedemann Syndrome/genetics , DNA Methylation , Genomic Imprinting , Humans , Mutation
13.
J Autoimmun ; 107: 102357, 2020 02.
Article in English | MEDLINE | ID: mdl-31780316

ABSTRACT

The mechanisms underlying the female-bias in autoimmunity are poorly understood. The contribution of genetic and epigenetic factors from the inactive X chromosome (Xi) are beginning to emerge as critical mediators of autoimmunity in females. Here, we ask how epigenetic features of the Xi change during disease development in B cells from the NZB/W F1 spontaneous mouse model of lupus, which is female-biased. We find that Xist RNA becomes increasingly mislocalized from the Xi with disease onset. While NZB/W F1 naïve B cells have H3K27me3 foci on the Xi, which are missing from healthy C57BL/6 and BALB/c mice, these foci are progressively lost in stimulated B cells during disease. Using single-molecule RNA FISH, we show that the X-linked gene Tlr7 is biallelically expressed in ~20% of NZB/W F1 B cells, and that the amount of biallelic expression does not change with disease. We also present sex-specific gene expression profiles for diseased NZB/W F1 B cells, and find female-specific upregulation of 20 genes, including the autoimmunity-related genes Cxcl13, Msr1, Igj, and Prdm1. Together, these studies provide important insight into the loss of epigenetic modifications from the Xi and changes with gene expression in a mouse model of female-biased SLE.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Epigenesis, Genetic , Lupus Erythematosus, Systemic/etiology , Lupus Erythematosus, Systemic/metabolism , X Chromosome Inactivation/genetics , X Chromosome/genetics , Animals , Biomarkers , Computational Biology/methods , Disease Models, Animal , Female , Gene Expression Regulation , In Situ Hybridization, Fluorescence , Lupus Erythematosus, Systemic/diagnosis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NZB , Severity of Illness Index , Sex Factors
14.
Curr Opin Genet Dev ; 55: 26-31, 2019 04.
Article in English | MEDLINE | ID: mdl-31108425

ABSTRACT

The imbalance of sex chromosomes between females (XX) and males (XY) necessitates strict regulation of X-linked gene expression. X-Chromosome Inactivation (XCI) selects one X for transcriptional silencing in the early embryo, generating an epigenetically distinct and transcriptionally silent X that is maintained into adulthood. Some genes on the inactive X escape XCI, and human somatic cells have a greater number of escape genes compared to mice. Advances with single-cell technologies have revealed human-specific escape genes in fibroblasts and immune cells, some of which exhibit cell and tissue specificity. Here, we review recent discoveries of dynamic XCI in female immune cells, which have changed our understanding of XCI maintenance, and discuss how some X-linked genes might become overexpressed in female-biased autoimmunity.


Subject(s)
Embryo, Mammalian/metabolism , Gene Silencing , Genes, X-Linked , X Chromosome Inactivation/genetics , X Chromosome/genetics , Animals , Embryo, Mammalian/cytology , Humans
15.
J Leukoc Biol ; 106(4): 919-932, 2019 10.
Article in English | MEDLINE | ID: mdl-31125996

ABSTRACT

Women and men exhibit differences in innate and adaptive immunity, and women are more susceptible to numerous autoimmune disorders. Two or more X chromosomes increases the risk for some autoimmune diseases, and increased expression of some X-linked immune genes is frequently observed in female lymphocytes from autoimmune patients. Evidence from mouse models of autoimmunity also supports the idea that increased expression of X-linked genes is a feature of female-biased autoimmunity. Recent studies have begun to elucidate the correlation between abnormal X-chromosome inactivation (XCI), an essential mechanism female somatic cells use to equalize X-linked gene dosage between the sexes, and autoimmunity in lymphocytes. In this review, we highlight research describing overexpression of X-linked immunity-related genes and female-biased autoimmunity in both humans and mouse models, and make connections with our recent work elucidating lymphocyte-specific mechanisms of XCI maintenance that become altered in lupus patients.


Subject(s)
Autoimmunity/genetics , Gene Dosage , Genes, X-Linked , X Chromosome/genetics , Animals , Female , Humans , Sex Characteristics , X Chromosome Inactivation/genetics
16.
Proc Natl Acad Sci U S A ; 116(24): 11916-11925, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31138702

ABSTRACT

The transcriptional programs that regulate CD8 T-cell differentiation and function in the context of viral infections or tumor immune surveillance have been extensively studied; yet how long noncoding RNAs (lncRNAs) and the loci that transcribe them contribute to the regulation of CD8 T cells during viral infections remains largely unexplored. Here, we report that transcription of the lncRNA Morrbid is specifically induced by T-cell receptor (TCR) and type I IFN stimulation during the early stages of acute and chronic lymphocytic choriomeningitis virus (LCMV) infection. In response to type I IFN, the Morrbid RNA and its locus control CD8 T cell expansion, survival, and effector function by regulating the expression of the proapoptotic factor, Bcl2l11, and by modulating the strength of the PI3K-AKT signaling pathway. Thus, our results demonstrate that inflammatory cue-responsive lncRNA loci represent fundamental mechanisms by which CD8 T cells are regulated in response to pathogens and potentially cancer.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocytic Choriomeningitis/immunology , RNA, Long Noncoding/immunology , Animals , CD8-Positive T-Lymphocytes/virology , Cell Differentiation/immunology , Interferon Type I/immunology , Lymphocyte Activation/immunology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-bcl-2/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology
17.
JCI Insight ; 4(7)2019 04 04.
Article in English | MEDLINE | ID: mdl-30944248

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disorder that predominantly affects women and is driven by autoreactive T cell-mediated inflammation. It is known that individuals with multiple X-chromosomes are at increased risk for developing SLE; however, the mechanisms underlying this genetic basis are unclear. Here, we use single cell imaging to determine the epigenetic features of the inactive X (Xi) in developing thymocytes, mature T cell subsets, and T cells from SLE patients and mice. We show that Xist RNA and heterochromatin modifications transiently reappear at the Xi and are missing in mature single positive T cells. Activation of mature T cells restores Xist RNA and heterochromatin marks simultaneously back to the Xi. Notably, X-chromosome inactivation (XCI) maintenance is altered in T cells of SLE patients and late-stage-disease NZB/W F1 female mice, and we show that X-linked genes are abnormally upregulated in SLE patient T cells. SLE T cells also have altered expression of XIST RNA interactome genes, accounting for perturbations of Xi epigenetic features. Thus, abnormal XCI maintenance is a feature of SLE disease, and we propose that Xist RNA localization at the Xi could be an important factor for maintaining dosage compensation of X-linked genes in T cells.


Subject(s)
Autoimmunity/genetics , Lupus Erythematosus, Systemic/genetics , T-Lymphocyte Subsets/immunology , T-Lymphocytes/immunology , X Chromosome Inactivation/immunology , Animals , Child , Datasets as Topic , Disease Models, Animal , Female , Heterochromatin/genetics , Heterochromatin/metabolism , Histones/genetics , Histones/metabolism , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/immunology , Lymphocyte Activation , Male , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Seq , Sex Factors , Single-Cell Analysis , Spleen/cytology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/metabolism , X Chromosome/genetics , X Chromosome/metabolism
18.
Biol Psychiatry ; 85(2): 97-106, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30314641

ABSTRACT

During pregnancy, programming of the fetal central nervous system establishes vulnerabilities for emergence of neuropsychiatric phenotypes later in life. Psychosocial influences during pregnancy, such as stressful life events and chronic stress, correlate with offspring neuropsychiatric disorders and inflammation, respectively. Stress promotes inflammation, but the role of inflammation as a mediator between maternal psychosocial stress and offspring neuropsychiatric outcomes has not been extensively studied in humans. This review summarizes clinical evidence linking specific types of stress to maternal inflammatory load during pregnancy. We propose that inflammation is a mediator in the relationship between psychosocial stress and offspring neuropsychiatric outcomes, potentially influenced by poor maternal glucocorticoid-immune coordination. We present relevant experimental animal research supporting this hypothesis. We conclude that clinical and preclinical research supports the premise that stress-induced maternal immune activation contributes in part to prenatal programming of risk. Programming of risk is likely due to a combination of vulnerabilities, including multiple or repeated inflammatory events; timing of such events; poor maternal regulation of inflammation; genetic vulnerability; and lifestyle contributors.


Subject(s)
Immune System/physiopathology , Inflammation/physiopathology , Mental Disorders/physiopathology , Prenatal Exposure Delayed Effects/physiopathology , Stress, Psychological/physiopathology , Animals , Female , Humans , Pregnancy
19.
Stem Cells Dev ; 27(19): 1360-1375, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29993333

ABSTRACT

The placenta is a short-lived tissue required for embryonic growth and survival, and it is fetal derived. Fetal sex influences gestation, and many sexual dimorphic diseases have origins in utero. There is sex-biased gene expression in third-trimester human placentas, yet the origin of sex-specific expression is unknown. Here, we used an in vitro differentiation model to convert human embryonic stem cells (hESCs) into trophoblastic progenitor cells of the first-trimester placenta, which will eventually become mature extravillous trophoblasts and syncytiotrophoblasts. We observed significant sex differences in transcriptomic profiles of hESCs and trophoblastic progenitors, and also with the differentiation process itself. Male cells had higher dosage of X/Y gene pairs relative to female samples, supporting functions for Y-linked genes beyond spermatogenesis in the hESCs and in the early placenta. Female-specific differentiation altered the expression of several thousand genes compared with male cells, and female cells specifically upregulated numerous autosomal genes with known roles in trophoblast function. Sex-biased upregulation of cellular pathways during trophoblast differentiation was also evident. This study is the first to identify sex differences in trophoblastic progenitor cells of the first-trimester human placenta, and reveal early origins for sexual dimorphism.


Subject(s)
Cell Differentiation , Human Embryonic Stem Cells/cytology , Sex Characteristics , Transcriptome , Cells, Cultured , Chromosomes, Human, Y/genetics , Female , Gene Expression Regulation, Developmental , Human Embryonic Stem Cells/metabolism , Humans , Male , Placenta/cytology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL