Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731888

ABSTRACT

The interaction of heparin with antithrombin (AT) involves a specific sequence corresponding to the pentasaccharide GlcNAc/NS6S-GlcA-GlcNS3S6S-IdoA2S-GlcNS6S (AGA*IA). Recent studies have revealed that two AGA*IA-containing hexasaccharides, which differ in the sulfation degree of the iduronic acid unit, exhibit similar binding to AT, albeit with different affinities. However, the lack of experimental data concerning the molecular contacts between these ligands and the amino acids within the protein-binding site prevents a detailed description of the complexes. Differential epitope mapping (DEEP)-STD NMR, in combination with MD simulations, enables the experimental observation and comparison of two heparin pentasaccharides interacting with AT, revealing slightly different bound orientations and distinct affinities of both glycans for AT. We demonstrate the effectiveness of the differential solvent DEEP-STD NMR approach in determining the presence of polar residues in the recognition sites of glycosaminoglycan-binding proteins.


Subject(s)
Antithrombins , Heparin , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Oligosaccharides , Protein Binding , Heparin/chemistry , Heparin/metabolism , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Antithrombins/chemistry , Antithrombins/metabolism , Magnetic Resonance Spectroscopy/methods , Binding Sites , Solvents/chemistry , Epitope Mapping/methods , Humans
2.
Anal Chem ; 96(2): 615-619, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38165272

ABSTRACT

STD NMR spectroscopy is a powerful ligand-observed NMR tool for screening and characterizing the interactions of small molecules and low molecular weight fragments with a given macromolecule, identifying the main intermolecular contacts in the bound state. It is also a powerful analytical technique for the accurate determination of protein-ligand dissociation constants (KD) of medium-to-weak affinity, of interest in the pharmaceutical industry. However, accurate KD determination and epitope mapping requires a long series of experiments at increasing saturation times to carry out a full analysis using the so-called STD NMR build-up curve approach and apply the "initial slopes approximation". Here, we have developed a new protocol to bypass this important limitation, which allows us to obtain initial slopes by using just two saturation times and, hence, to very quickly determine precise protein-ligand dissociation constants by STD NMR.


Subject(s)
Magnetic Resonance Imaging , Proteins , Ligands , Proteins/chemistry , Magnetic Resonance Spectroscopy/methods , Epitope Mapping , Protein Binding
3.
J Am Chem Soc ; 145(48): 26009-26015, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37979136

ABSTRACT

Lectins are capable of reading out the structural information contained in carbohydrates through specific recognition processes. Determining the binding epitope of the sugar is fundamental to understanding this recognition event. Nuclear magnetic resonance (NMR) is a powerful tool to obtain this structural information in solution; however, when the sugar involved is a complex oligosaccharide, such as high mannose, the signal overlap found in the NMR spectra precludes an accurate analysis of the interaction. The introduction of tags into these complex oligosaccharides could overcome these problems and facilitate NMR studies. Here, we show the preparation of the Man9 of high mannose with some fluorine tags and the study of the interaction with its receptor, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN). This fluorinated ligand has allowed us to apply heteronuclear two-dimensional (2D) 1H,19F STD-TOCSYreF NMR experiments, using the initial slope approach, which has facilitated the analysis of the Man9/DC-SIGN interaction, unequivocally providing the binding epitope.


Subject(s)
Lectins, C-Type , Mannose , Humans , Mannose/chemistry , Lectins, C-Type/metabolism , Oligosaccharides/chemistry , Sugars , Magnetic Resonance Spectroscopy , Epitopes , Dendritic Cells
4.
J Am Chem Soc ; 145(30): 16391-16397, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37487192

ABSTRACT

We have combined saturation transfer difference NMR (STD NMR) with chemical shift imaging (CSI) and controlled concentration gradients of small molecule ligands to develop imaging STD NMR, a new tool for the assessment of protein-ligand interactions. Our methodology allows the determination of protein-ligand dissociation constants (KD) and assessment of the binding specificity in a single NMR tube, avoiding time-consuming titrations. We demonstrate the formation of suitable and reproducible concentration gradients of ligand along the vertical axis of the tube, against homogeneous protein concentration, and present a CSI pulse sequence for the acquisition of STD NMR experiments at different positions along the sample tube. Compared to the conventional methodology in which the [ligand]/[protein] ratio is increased manually, we can perform STD NMR experiments at a greater number of ratios and construct binding epitopes in a fraction (∼20%) of the experimental time. Second, imaging STD NMR also allows us to screen for non-specific binders, by monitoring any variation of the binding epitope map at increasing [ligand]/[protein] ratios. Hence, the proposed method does carry the potential to speed up and smooth out the drug discovery process.


Subject(s)
Magnetic Resonance Imaging , Proteins , Binding Sites , Ligands , Magnetic Resonance Spectroscopy/methods , Proteins/chemistry , Protein Binding , Epitopes/chemistry
5.
JACS Au ; 3(3): 628-656, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37006755

ABSTRACT

Glycosaminoglycans (GAGs) are complex polysaccharides exhibiting a vast structural diversity and fulfilling various functions mediated by thousands of interactions in the extracellular matrix, at the cell surface, and within the cells where they have been detected in the nucleus. It is known that the chemical groups attached to GAGs and GAG conformations comprise "glycocodes" that are not yet fully deciphered. The molecular context also matters for GAG structures and functions, and the influence of the structure and functions of the proteoglycan core proteins on sulfated GAGs and vice versa warrants further investigation. The lack of dedicated bioinformatic tools for mining GAG data sets contributes to a partial characterization of the structural and functional landscape and interactions of GAGs. These pending issues will benefit from the development of new approaches reviewed here, namely (i) the synthesis of GAG oligosaccharides to build large and diverse GAG libraries, (ii) GAG analysis and sequencing by mass spectrometry (e.g., ion mobility-mass spectrometry), gas-phase infrared spectroscopy, recognition tunnelling nanopores, and molecular modeling to identify bioactive GAG sequences, biophysical methods to investigate binding interfaces, and to expand our knowledge and understanding of glycocodes governing GAG molecular recognition, and (iii) artificial intelligence for in-depth investigation of GAGomic data sets and their integration with proteomics.

6.
Ann Bot ; 131(7): 1107-1119, 2023 08 25.
Article in English | MEDLINE | ID: mdl-36976581

ABSTRACT

BACKGROUND AND AIMS: Arbuscular mycorrhizal (AM) fungi enhance the uptake of water and minerals by the plant hosts, alleviating plant stress. Therefore, AM fungal-plant interactions are particularly important in drylands and other stressful ecosystems. We aimed to determine the combined and independent effects of above- and below-ground plant community attributes (i.e. diversity and composition), soil heterogeneity and spatial covariates on the spatial structure of the AM fungal communities in a semiarid Mediterranean scrubland. Furthermore, we evaluated how the phylogenetic relatedness of both plants and AM fungi shapes these symbiotic relationships. METHODS: We characterized the composition and diversity of AM fungal and plant communities in a dry Mediterranean scrubland taxonomically and phylogenetically, using DNA metabarcoding and a spatially explicit sampling design at the plant neighbourhood scale. KEY RESULTS: The above- and below-ground plant community attributes, soil physicochemical properties and spatial variables explained unique fractions of AM fungal diversity and composition. Mainly, variations in plant composition affected the AM fungal composition and diversity. Our results also showed that particular AM fungal taxa tended to be associated with closely related plant species, suggesting the existence of a phylogenetic signal. Although soil texture, fertility and pH affected AM fungal community assembly, spatial factors had a greater influence on AM fungal community composition and diversity than soil physicochemical properties. CONCLUSIONS: Our results highlight that the more easily accessible above-ground vegetation is a reliable indicator of the linkages between plant roots and AM fungi. We also emphasize the importance of soil physicochemical properties in addition to below-ground plant information, while accounting for the phylogenetic relationships of both plants and fungi, because these factors improve our ability to predict the relationships between AM fungal and plant communities.


Subject(s)
Mycorrhizae , Mycorrhizae/genetics , Ecosystem , Phylogeny , Soil/chemistry , Symbiosis , Plant Roots , Plants/microbiology , Soil Microbiology , Fungi
7.
J Colloid Interface Sci ; 638: 135-148, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36736115

ABSTRACT

Despite extensive use of micelles in materials and colloidal science, their supramolecular organization as well as host-guest interactions within these dynamic assemblies are poorly understood. Small guest molecules in the presence of micelles undergo constant exchange between a micellar aggregate and the surrounding solution, posing a considerable challenge for their molecular level characterisation. In this work we reveal the interaction maps between small guest molecules and surfactants forming micelles via novel applications of NMR techniques supported with state-of-the-art analytical methods used in colloidal science. Model micelles composed of structurally distinct surfactants (block non-ionic polymer Pluronic® F-127, non-ionic surfactant Tween 20 or Tween 80, and ionic surfactant sodium lauryl sulphate, SLS) were selected and loaded with model small molecules of biological relevance (i.e. the drugs fluconazole, FLU or indomethacin, IMC) known to have different partition coefficients. Molecular level organization of FLU or IMC within hydrophilic and hydrophobic domains of micellar aggregates was established using the combination of NMR methods (1D 1H NMR, 1D 19F NMR, 2D 1H-1H NOESY and 2D 1H-19F HOESY, and the multifrequency-STD NMR) and corroborated with molecular dynamics (MD) simulations. This is the first application of multifrequency-STD NMR to colloidal systems, enabling us to elucidate intricately detailed patterns of drug/micelle interactions in a single NMR experiment within minutes. Importantly, our results indicate that flexible surfactants, such as block copolymers and polysorbates, form micellar aggregates with a surface composed of both hydrophilic and hydrophobic domains and do not follow the classical core-shell model of the micelle. We propose that the magnitude of changes in 1H chemical shifts corroborated with interaction maps obtained from DEEP-STD NMR and 2D NMR experiments can be used as an indicator of the strength of the guest-surfactant interactions. This NMR toolbox can be adopted for the analysis of broad range of colloidal host-guest systems from soft materials to biological systems.


Subject(s)
Micelles , Surface-Active Agents , Surface-Active Agents/chemistry , Sodium Dodecyl Sulfate/chemistry , Polysorbates/chemistry , Magnetic Resonance Spectroscopy
8.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36015178

ABSTRACT

In recent years, Saturation Transfer Difference NMR (STD NMR) has been proven to be a powerful and versatile ligand-based NMR technique to elucidate crucial aspects in the investigation of protein-ligand complexes. Novel STD NMR approaches relying on "multi-frequency" irradiation have enabled us to even elucidate specific ligand-amino acid interactions and explore the binding of fragments in previously unknown binding subsites. Exploring multi-subsite protein binding pockets is especially important in Fragment Based Drug Discovery (FBDD) to design leads of increased specificity and efficacy. We hereby propose a novel multi-frequency STD NMR approach based on direct irradiation of one of the ligands in a multi-ligand binding process, to probe the vicinity and explore the relative orientation of fragments in adjacent binding sub-sites, which we called Inter-Ligand STD NMR (IL-STD NMR). We proved its applicability on (i) a standard protein-ligand system commonly used for ligand-observed NMR benchmarking: Naproxen as bound to Bovine Serum Albumin, and (ii) the biologically relevant system of Cholera Toxin Subunit B and two inhibitors adjacently bound within the GM1 binding site. Relative to Inter-Ligand NOE (ILOE), the current state-of-the-art methodology to probe relative orientations of adjacent ligands, IL-STD NMR requires about one tenth of the experimental time and protein consumption, making it a competitive methodology with the potential to be applied in the pharmaceutical industries.

9.
Cell Rep ; 38(13): 110611, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354052

ABSTRACT

The HIV-1 Envelope glycoprotein (Env) is the sole target for broadly neutralizing antibodies (bnAbs). Env is heavily glycosylated with host-derived N-glycans, and many bnAbs bind to, or are dependent upon, Env glycans for neutralization. Although glycan-binding bnAbs are frequently detected in HIV-infected individuals, attempts to elicit them have been unsuccessful because of the poor immunogenicity of Env N-glycans. Here, we report cross-reactivity of glycan-binding bnAbs with self- and non-self N-glycans and glycoprotein antigens from different life-stages of Schistosoma mansoni. Using the IAVI Protocol C HIV infection cohort, we examine the relationship between S. mansoni seropositivity and development of bnAbs targeting glycan-dependent epitopes. We show that the unmutated common ancestor of the N332/V3-specific bnAb lineage PCDN76, isolated from an HIV-infected donor with S. mansoni seropositivity, binds to S. mansoni cercariae while lacking reactivity to gp120. Overall, these results present a strategy for elicitation of glycan-reactive bnAbs which could be exploited in HIV-1 vaccine development.


Subject(s)
HIV Infections , HIV-1 , Parasites , Animals , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , HIV Antibodies , Humans , Parasites/metabolism , Polysaccharides/metabolism
11.
Plant Environ Interact ; 3(1): 16-27, 2022 Feb.
Article in English | MEDLINE | ID: mdl-37283692

ABSTRACT

Salt marshes are unique habitats between sea or saline lakes and land that need to be conserved from the effects of global change. Understanding the variation in functional structure of plant community along environmental gradients is critical to predict the response of plant communities to ongoing environmental changes. We evaluated the changes in the functional structure of halophytic communities along soil gradients including salinity, in Iranian salt marshes; Lake Urmia, Lake Meyghan, Musa estuary, and Nayband Bay (Iran). We established 48 plots from 16 sites in four salt marshes and sampled 10 leaves per species to measure leaf functional traits. Five soil samples were sampled from each plot and 30 variables were analyzed. We examined the changes in the functional structure of plant communities (i.e., functional diversity [FD] and community weighted mean [CWM]) along local soil gradients using linear mixed effect models. Our results showed that FD and CWM of leaf thickness tended to increase with salinity, while those indices related to leaf shape decreased following soil potassium content. Our results suggest that the variations in functional structure of plant communities along local soil gradients reveal the effect of different ecological processes (e.g., niche differentiation related to the habitat heterogeneity) that drive the assembly of halophytic plant communities in SW Asian salt marshes.

12.
PLoS Biol ; 19(12): e3001498, 2021 12.
Article in English | MEDLINE | ID: mdl-34936658

ABSTRACT

The human gut symbiont Ruminococcus gnavus displays strain-specific repertoires of glycoside hydrolases (GHs) contributing to its spatial location in the gut. Sequence similarity network analysis identified strain-specific differences in blood-group endo-ß-1,4-galactosidase belonging to the GH98 family. We determined the substrate and linkage specificities of GH98 from R. gnavus ATCC 29149, RgGH98, against a range of defined oligosaccharides and glycoconjugates including mucin. We showed by HPAEC-PAD and LC-FD-MS/MS that RgGH98 is specific for blood group A tetrasaccharide type II (BgA II). Isothermal titration calorimetry (ITC) and saturation transfer difference (STD) NMR confirmed RgGH98 affinity for blood group A over blood group B and H antigens. The molecular basis of RgGH98 strict specificity was further investigated using a combination of glycan microarrays, site-directed mutagenesis, and X-ray crystallography. The crystal structures of RgGH98 in complex with BgA trisaccharide (BgAtri) and of RgGH98 E411A with BgA II revealed a dedicated hydrogen network of residues, which were shown by site-directed mutagenesis to be critical to the recognition of the BgA epitope. We demonstrated experimentally that RgGH98 is part of an operon of 10 genes that is overexpresssed in vitro when R. gnavus ATCC 29149 is grown on mucin as sole carbon source as shown by RNAseq analysis and RT-qPCR confirmed RgGH98 expression on BgA II growth. Using MALDI-ToF MS, we showed that RgGH98 releases BgAtri from mucin and that pretreatment of mucin with RgGH98 confered R. gnavus E1 the ability to grow, by enabling the E1 strain to metabolise BgAtri and access the underlying mucin glycan chain. These data further support that the GH repertoire of R. gnavus strains enable them to colonise different nutritional niches in the human gut and has potential applications in diagnostic and therapeutics against infection.


Subject(s)
Clostridiales/metabolism , Mucin-1/metabolism , ABO Blood-Group System/immunology , Blood Group Antigens/immunology , Clostridiales/genetics , Clostridiales/physiology , Gastrointestinal Microbiome , Gastrointestinal Tract , Glycoside Hydrolases/metabolism , Humans , Mucins/metabolism , Oligosaccharides/metabolism , Polysaccharides/metabolism , Ruminococcus/genetics , Ruminococcus/metabolism , Substrate Specificity , Tandem Mass Spectrometry/methods
13.
Front Mol Biosci ; 8: 727980, 2021.
Article in English | MEDLINE | ID: mdl-34604306

ABSTRACT

Biofilms confine bacterial cells within self-produced matrices, offering advantages such as protection from antibiotics and entrapment of nutrients. Polysaccharides are major components in these macromolecular assemblies, and their interactions with other chemicals are of high relevance for the benefits provided by the biofilm 3D molecular matrix. NMR is a powerful technique for the study and characterization of the interactions between molecules of biological relevance. In this study, we have applied multifrequency saturation transfer difference (STD) NMR and DOSY NMR approaches to elucidate the interactions between the exopolysaccharide produced by Burkholderia multivorans C1576 (EpolC1576) and the antibiotics kanamycin and ceftadizime. The NMR strategies presented here allowed for an extensive characterization at an atomic level of the mechanisms behind the implication of the EpolC1576 in the recalcitrance phenomena, which is the ability of bacteria in biofilms to survive in the presence of antibiotics. Our results suggest an active role for EpolC1576 in the recalcitrance mechanisms toward kanamycin and ceftadizime, though through two different mechanisms.

14.
Chem Sci ; 12(36): 12181-12191, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34667584

ABSTRACT

NleB/SseK effectors are arginine-GlcNAc-transferases expressed by enteric bacterial pathogens that modify host cell proteins to disrupt signaling pathways. While the conserved Citrobacter rodentium NleB and E. coli NleB1 proteins display a broad selectivity towards host proteins, Salmonella enterica SseK1, SseK2, and SseK3 have a narrowed protein substrate selectivity. Here, by combining computational and biophysical experiments, we demonstrate that the broad protein substrate selectivity of NleB relies on Tyr284NleB/NleB1, a second-shell residue contiguous to the catalytic machinery. Tyr284NleB/NleB1 is important in coupling protein substrate binding to catalysis. This is exemplified by S286YSseK1 and N302YSseK2 mutants, which become active towards FADD and DR3 death domains, respectively, and whose kinetic properties match those of enterohemorrhagic E. coli NleB1. The integration of these mutants into S. enterica increases S. enterica survival in macrophages, suggesting that better enzymatic kinetic parameters lead to enhanced virulence. Our findings provide insights into how these enzymes finely tune arginine-glycosylation and, in turn, bacterial virulence. In addition, our data show how promiscuous glycosyltransferases preferentially glycosylate specific protein substrates.

15.
Chemistry ; 27(63): 15688-15698, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34436794

ABSTRACT

ß-1→4-Glucan polysaccharides like cellulose, derivatives and analogues, are attracting attention due to their unique physicochemical properties, as ideal candidates for many different applications in biotechnology. Access to these polysaccharides with a high level of purity at scale is still challenging, and eco-friendly alternatives by using enzymes in vitro are highly desirable. One prominent candidate enzyme is cellodextrin phosphorylase (CDP) from Ruminiclostridium thermocellum, which is able to yield cellulose oligomers from short cellodextrins and α-d-glucose 1-phosphate (Glc-1-P) as substrates. Remarkably, its broad specificity towards donors and acceptors allows the generation of highly diverse cellulose-based structures to produce novel materials. However, to fully exploit this CDP broad specificity, a detailed understanding of the molecular recognition of substrates by this enzyme in solution is needed. Herein, we provide a detailed investigation of the molecular recognition of ligands by CDP in solution by saturation transfer difference (STD) NMR spectroscopy, tr-NOESY and protein-ligand docking. Our results, discussed in the context of previous reaction kinetics data in the literature, allow a better understanding of the structural basis of the broad binding specificity of this biotechnologically relevant enzyme.


Subject(s)
Clostridium thermocellum , Glucosyltransferases , Magnetic Resonance Spectroscopy , Polysaccharides
16.
J Colloid Interface Sci ; 594: 217-227, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33756365

ABSTRACT

HYPOTHESIS: The classical STD NMR protocol to monitor solvent interactions in gels is strongly dependent on gelator and solvent concentrations and does not report on the degree of structuration of the solvent at the particle/solvent interface. We hypothesised that, for suspensions of large gelator particles, solvent structuration could be characterised by STD NMR when taking into account the particle-to-solvent 1H-1H spin diffusion transfer using the 1D diffusion equation. EXPERIMENTS: We have carried out a systematic study on effect of gelator and solvent concentrations, and gelator surface charge, affecting the behaviour of the classical STD NMR build-up curves. To do so, we have characterised solvent interactions in dispersions of starch and cellulose-like particles prepared in deuterated water and alcohol/D2O mixtures. FINDINGS: The Spin Diffusion Transfer Difference (SDTD) NMR protocol is independent of the gelator and solvent concentrations, hence allowing the estimation of the degree of solvent structuration within different particle networks. In addition, the simulation of SDTD build-up curves using the general one-dimensional diffusion equation allows the determination of minimum distances (r) and spin diffusion rates (D) at the particle/solvent interface. This novel NMR protocol can be readily extended to characterise the solvent(s) organisation in any type of colloidal systems constituted by large particles.

17.
J Biol Chem ; 296: 100307, 2021.
Article in English | MEDLINE | ID: mdl-33476646

ABSTRACT

The Mycobacterium tuberculosis (Mtb) LpqY-SugABC ATP-binding cassette transporter is a recycling system that imports trehalose released during remodeling of the Mtb cell-envelope. As this process is essential for the virulence of the Mtb pathogen, it may represent an important target for tuberculosis drug and diagnostic development, but the transporter specificity and molecular determinants of substrate recognition are unknown. To address this, we have determined the structural and biochemical basis of how mycobacteria transport trehalose using a combination of crystallography, saturation transfer difference NMR, molecular dynamics, site-directed mutagenesis, biochemical/biophysical assays, and the synthesis of trehalose analogs. This analysis pinpoints key residues of the LpqY substrate binding lipoprotein that dictate substrate-specific recognition and has revealed which disaccharide modifications are tolerated. These findings provide critical insights into how the essential Mtb LpqY-SugABC transporter reuses trehalose and modified analogs and specifies a framework that can be exploited for the design of new antitubercular agents and/or diagnostic tools.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Bacterial Proteins/chemistry , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Trehalose/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amino Acid Substitution , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Biological Transport , Cell Wall/genetics , Cell Wall/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Ligands , Molecular Dynamics Simulation , Mutation , Mycobacterium tuberculosis/genetics , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermodynamics , Trehalose/analogs & derivatives , Virulence
18.
Chem Commun (Camb) ; 57(9): 1145-1148, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33411866

ABSTRACT

The ability to custom-modify cell surface glycans holds great promise for treatment of a variety of diseases. We propose a glycomimetic of l-fucose that markedly inhibits the creation of sLeX by FTVI and FTVII, but has no effect on creation of LeX by FTIX. Our findings thus indicate that selective suppression of sLex display can be achieved, and STD-NMR studies surprisingly reveal that the mimetic does not compete with GDP-fucose at the enzymatic binding site.


Subject(s)
Fucose/analogs & derivatives , Fucose/pharmacology , Fucosyltransferases/antagonists & inhibitors , Cell Line, Tumor , Fucose/chemistry , Gene Expression Regulation, Enzymologic/drug effects , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/enzymology , Precursor Cell Lymphoblastic Leukemia-Lymphoma
19.
ACS Catal ; 11(15): 9052-9065, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-35662980

ABSTRACT

FUT8 is an essential α-1,6-fucosyltransferase that fucosylates the innermost GlcNAc of N-glycans, a process called core fucosylation. In vitro, FUT8 exhibits substrate preference for the biantennary complex N-glycan oligosaccharide (G0), but the role of the underlying protein/peptide to which N-glycans are attached remains unclear. Here, we explored the FUT8 enzyme with a series of N-glycan oligosaccharides, N-glycopeptides, and an Asn-linked oligosaccharide. We found that the underlying peptide plays a role in fucosylation of paucimannose (low mannose) and high-mannose N-glycans but not for complex-type N-glycans. Using saturation transfer difference (STD) NMR spectroscopy, we demonstrate that FUT8 recognizes all sugar units of the G0 N-glycan and most of the amino acid residues (Asn-X-Thr) that serve as a recognition sequon for the oligosaccharyltransferase (OST). The largest STD signals were observed in the presence of GDP, suggesting that prior FUT8 binding to GDP-ß-l-fucose (GDP-Fuc) is required for an optimal recognition of N-glycans. We applied genetic engineering of glycosylation capacities in CHO cells to evaluate FUT8 core fucosylation of high-mannose and complex-type N-glycans in cells with a panel of well-characterized therapeutic N-glycoproteins. This confirmed that core fucosylation mainly occurs on complex-type N-glycans, although clearly only at selected glycosites. Eliminating the capacity for complex-type glycosylation in cells (KO mgat1) revealed that glycosites with complex-type N-glycans when converted to high mannose lost the core Fuc. Interestingly, however, for erythropoietin that is uncommon among the tested glycoproteins in efficiently acquiring tetra-antennary N-glycans, two out of three N-glycosites obtained Fuc on the high-mannose N-glycans. An examination of the N-glycosylation sites of several protein crystal structures indicates that core fucosylation is mostly affected by the accessibility and nature of the N-glycan and not by the nature of the underlying peptide sequence. These data have further elucidated the different FUT8 acceptor substrate specificities both in vitro and in vivo in cells, revealing different mechanisms for promoting core fucosylation.

20.
Chemistry ; 27(4): 1374-1382, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-32990374

ABSTRACT

Understanding the fine details of the self-assembly of building blocks into complex hierarchical structures represents a major challenge en route to the design and preparation of soft-matter materials with specific properties. Enzymatically synthesised cellodextrins are known to have limited water solubility beyond DP9, a point at which they self-assemble into particles resembling the antiparallel cellulose II crystalline packing. We have prepared and characterised a series of site-selectively fluorinated cellodextrins with different degrees of fluorination and substitution patterns by chemoenzymatic synthesis. Bearing in mind the potential disruption of the hydrogen-bond network of cellulose II, we have prepared and characterised a multiply 6-fluorinated cellodextrin. In addition, a series of single site-selectively fluorinated cellodextrins was synthesised to assess the structural impact upon the addition of one fluorine atom per chain. The structural characterisation of these materials at different length scales, combining advanced NMR spectroscopy and microscopy methods, showed that a 6-fluorinated donor substrate yielded multiply 6-fluorinated cellodextrin chains that assembled into particles presenting morphological and crystallinity features, and intermolecular interactions, that are unprecedented for cellulose-like materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...