Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Ann Bot ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721801

ABSTRACT

BACKGROUND AND AIMS: Lianas have higher relative abundance and biomass in drier seasonal forests than rainforests, but whether this difference is associated with their hydraulic strategies is unclear. Here, we investigate whether lianas of seasonally dry forests are safer and more efficient in water transport than rainforest ones, explaining liana abundance patterns. METHODS: We measured hydraulic traits on five pairs of congeneric lianas of the tribe Bignonieae in two contrasting forest sites: the wet 'Dense Ombrophilous Forest' in the Central Amazonia (~ 2 dry months) and the drier 'Semideciduous Seasonal Forest' in the inland Atlantic Forest (~6 dry months). We also gathered a broader database, including 197 trees and 58 liana species from different tropical forests, to compare hydraulic safety between habits and forest types. KEY RESULTS: Bignonieae lianas from both forests had high and similar hydraulic efficiency and exhibited variability in resistance to embolism across forest types when phylogenetic relationships are taken into account. Three genera had higher hydraulic safety in the seasonal forest than in the rainforest, but species across both forests had similar positive hydraulic safety margin despite lower predawn water potential values of seasonal forest' lianas. We did not find the safety-efficiency trade-off. Merging our results with previously published data evidenced a high variability of resistance to embolism in both trees and lianas, independent of forest types. CONCLUSIONS: The high hydraulic efficiency of lianas detected here probably favors their rapid growth across tropical forests, but differences in hydraulic safety highlight that some species are highly vulnerable and may rely on other mechanisms to cope with drought. Future research on the lethal dehydration threshold and the connection between hydraulic resistance strategies and liana abundance could offer further insights into tropical forest dynamics under climatic threats.

2.
New Phytol ; 241(6): 2589-2605, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37882322

ABSTRACT

The occurrence of conducting vascular tissue in the pith (CVTP) of tracheophytes is noteworthy. Medullary bundles, one of the remarkable examples of CVTP, evolved multiple times across angiosperms, notably in the Caryophyllales. Yet, information on the occurrence of medullary bundles is fragmented, hampering our understanding of their structure-function relationships, and evolutionary implications. Using three plastid molecular markers (matK, rbcL, and rps16 intron), a phylogeny is constructed for 561 species of Caryophyllales, and anatomical data are assembled for 856 species across 40 families to investigate the diversity of medullary bundles, their function, evolution, and diversification dynamics. Additionally, correlated evolution between medullary bundles and successive cambia was tested. Medullary bundles are ancestrally absent in Caryophyllales and evolved in core and noncore families. They are structurally diverse (e.g. number, arrangement, and types of bundles) and functionally active throughout the plant's lifespan, providing increased hydraulic conductivity, especially in herbaceous plants. Acquisition of medullary bundles does not explain diversification rate heterogeneity but is correlated to a higher diversification rate. Disparate developmental pathways were found leading to rampant convergent evolution of CVTP in Caryophyllales. These findings indicate the diversification of medullary bundles and vascular tissues as another central theme for functional and comparative molecular studies in Caryophyllales.


Subject(s)
Caryophyllales , Magnoliopsida , Humans , Phylogeny , Evolution, Molecular
3.
Evodevo ; 13(1): 4, 2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35093184

ABSTRACT

BACKGROUND: Alternative patterns of secondary growth in stems of Nyctaginaceae is present in all growth habits of the family and have been known for a long time. However, the interpretation of types of cambial variants have been controversial, given that different authors have given them different developmental interpretations. The different growth habits coupled with an enormous stem anatomical diversity offers the unique opportunity to investigate the evolution of complex developments, to address how these anatomies shifted within habits, and how the acquisition of novel cambial variants and habit transitions impacted the diversification of the family. METHODS: We integrated developmental data with a phylogenetic framework to investigate the diversity and evolution of stem anatomy in Nyctaginaceae using phylogenetic comparative methods, reconstructing ancestral states, and examining whether anatomical shifts correspond to species diversification rate shifts in the family. RESULTS: Two types of cambial variants, interxylary phloem and successive cambia, were recorded in Nyctaginaceae, which result from four different ontogenies. These ontogenetic trajectories depart from two distinct primary vascular structures (regular or polycyclic eustele) yet, they contain shared developmental stages which generate stem morphologies with deconstructed boundaries of morphological categories (continuum morphology). Unlike our a priori hypotheses, interxylary phloem is reconstructed as the ancestral character for the family, with three ontogenies characterized as successive cambia evolving in few taxa. Cambial variants are not contingent on habits, and their transitions are independent from species diversification. CONCLUSIONS: Our findings suggest that multiple developmental mechanisms, such as heterochrony and heterotopy, generate the transitions between interxylary phloem and successive cambia. Intermediate between these two extremes are present in Nyctaginaceae, suggesting a continuum morphology across the family as a generator of anatomical diversity.

4.
Appl Plant Sci ; 9(5)2021 May.
Article in English | MEDLINE | ID: mdl-34141498

ABSTRACT

PREMISE: Polishing entire stem and root samples is an effective method for studying their anatomy; however, polishing fresh samples to preserve woods with soft tissues or barks is challenging given that soft tissues shrink when dried. We propose sanding fresh or liquid-preserved samples under water as an alternative, given that it preserves all tissues in an intact and clear state. METHODS AND RESULTS: By manually grinding the surface of the samples under water using three ascending grits of waterproof sandpapers, an excellent polished sanded surface is obtained. The wood swarf goes into the water without clogging the cell lumina, rendering the surfaces adequate for cell visualization and description. We show results in palms, liana stems, roots, and wood blocks. CONCLUSIONS: Using this simple, inexpensive, rapid technique, it is possible to polish either fresh, dry, or liquid-preserved woody plant samples, preserving the integrity of both the soft and hard tissues and allowing for detailed observations of the stems and roots.

5.
Am J Bot ; 107(12): 1622-1634, 2020 12.
Article in English | MEDLINE | ID: mdl-33274437

ABSTRACT

PREMISE: Lianas are intriguing forest components in the tropics worldwide. They are characterized by thin and flexible stems, which have been related to a unique stem anatomy. Here, we hypothesized that the anatomical diversity of lianas, varying in shapes, proportions, and dimensions of tissues and cell types, would result in different stem bending stiffnesses across species. To test this hypothesis, we chose four abundant liana species of central Amazonia belonging to the monophyletic tribe Bignonieae (Bignoniaceae) and compared their basal stems for their anatomical architectures and bending properties. METHODS: Measurements of anatomical architecture and bending stiffness (structural Young's modulus) included light microscopy observations and three-point bending tests, which were performed on basal stems of eight individuals from four Bignonieae species. All analyses, including comparisons among species and relationships between stem stiffness and anatomical architecture, were performed using linear models. RESULTS: Although the anatomical architecture of each species consists of different qualitative and quantitative combinations of both tissues and cell types in basal stems, all species analyzed showed similarly lower bending stiffnesses. This similarity was shown to be directly related to high bark contribution to the second moment of area, vessel area and ray width. CONCLUSIONS: Similar values of stem bending stiffness were encountered in four liana species analyzed despite their variable anatomical architectures. This pattern provides new evidence of how different quantitative combinations of tissue and cell types in the basal stems of lianas can generate similarly low levels of stiffness in a group of closely related species.


Subject(s)
Bignoniaceae , Plant Stems
6.
Am J Bot ; 107(5): 707-725, 2020 05.
Article in English | MEDLINE | ID: mdl-32432350

ABSTRACT

PREMISE: Medullary bundles, i.e., vascular units in the pith, have evolved multiple times in vascular plants. However, no study has ever explored their anatomical diversity and evolution within a phylogenetic framework. Here, we investigated the development of the primary vascular system within Nyctaginaceae showing how medullary bundles diversified within the family. METHODS: Development of 62 species from 25 of the 31 genera of Nyctaginaceae in stem samples was thoroughly studied with light microscopy and micro-computed tomography. Ancestral states were reconstructed using a maximum likelihood approach. RESULTS: Two subtypes of eusteles were found, the regular eustele, lacking medullary bundles, observed exclusively in representatives of Leucastereae, and the polycyclic eustele, containing medullary bundles, found in all the remaining taxa. Medullary bundles had the same origin and development, but the organization was variable and independent of phyllotaxy. Within the polycyclic eustele, medullary bundles developed first, followed by the formation of a continuous concentric procambium, which forms a ring of vascular bundles enclosing the initially formed medullary bundles. The regular eustele emerged as a synapomorphy of Leucastereae, while the medullary bundles were shown to be a symplesiomorphy for Nyctaginaceae. CONCLUSIONS: Medullary bundles in Nyctaginaceae developed by a single shared pathway, that involved the departure of vascular traces from lateral organs toward the pith. These medullary bundles were encircled by a continuous concentric procambium that also constituted the polycyclic eustele, which was likely a symplesiomorphy for Nyctaginaceae with one single reversion to the regular eustele.


Subject(s)
Nyctaginaceae , Biological Evolution , Likelihood Functions , Phylogeny , X-Ray Microtomography
7.
Am J Bot ; 106(9): 1156-1172, 2019 09.
Article in English | MEDLINE | ID: mdl-31517989

ABSTRACT

PREMISE: Laticifers have evolved multiple times in angiosperms and have been interpreted as a key innovation involved in plant defense mechanisms. In Malpighiaceae, laticifers were previously known from a single lineage of trees and shrubs, the Galphimia clade, but with detailed anatomical analyses here, we show that their distribution is broader in the family, also encompassing large clades of lianas. METHODS: From 15 genera, 70 species of Malpighiaceae were surveyed through careful anatomical ontogenetic analysis of roots, stems, and leaves and detailed histochemical tests to elucidate the nature of laticifers and latex in the family. RESULTS: Articulated anastomosing laticifers were encountered in roots, stems, and leaves of two distantly related megadiverse genera of Malpighiaceae lianas: Stigmaphyllon (stigmaphylloid clade) and Tetrapterys s.s. (tetrapteroid clade). From the apex downward, in Stigmaphyllon the laticifers are derived from the procambium and from the cambium during its early activity and are present in the outermost part of the vascular cylinder of stems and leaves and in the pericycle of roots, whereas in Tetrapterys s.s. they are derived from the ground meristem, procambium, and cambium throughout the plant body and are present in the cortex and pith, either the pericycle in roots or the outermost part of the vascular system in stems and leaves, and the primary and secondary phloem. CONCLUSIONS: Laticifers seem to have evolved at least three times independently in Malpighiaceae, once in a lineage of trees and shrubs and twice in two distantly related megadiverse lianescent lineages. Laticifer evolution in Malpighiaceae is homoplastic and may be related to increases in species diversification.


Subject(s)
Malpighiaceae , Latex , Meristem , Phylogeny , Plant Leaves
8.
Ann Bot ; 118(4): 733-746, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27296135

ABSTRACT

Background and Aims Roots are key in the evolution of plants, being in charge of critical functions, such as water and nutrient uptake and anchorage of the plant body. Stems of lianescent Sapindaceae conform to the anatomical patterns typical of climbing plants, having cambial variants in their stems and vessel dimorphism in their wood. The roots of these lianas, however, are largely unexplored, so we do not know whether the plant habit has as strong an impact on their anatomy as on the anatomy of their stems. Our aim was, therefore, to thoroughly explore the anatomy of liana roots, underground organs under selective pressure completely different from that experienced by the stems. Methods We studied mature roots of 14 species belonging to five of the six genera currently recognized in the lianoid tribe Paullinieae (Sapindaceae) using traditional methods for macro- and microscopic analyses, as well as micro-computed tomography (micro-CT) techniques. Key Results Roots were shown to be strongly shaped by the lianescent habit in Paullinieae, exhibiting traits of the lianescent vascular syndrome in terms of both wood and overall anatomy. The only way to distinguish root from stem in secondary growth is by the exarch protoxylem position in the roots, as opposed to the endarch position typical of the stems. The most conspicuous trait of the lianescent vascular syndrome, which is the presence of vessel dimorphism, is evident in all roots, and we hypothesize that it helps to create an efficient, safe pathway for water conduction from this organ towards the stems. Other anatomical features present were parenchyma bands, present in the wood of almost all of the analysed species, except for Thinouia and Urvillea, where parenchyma-like fibre bands alternating with ordinary fibres are present. The majority of the roots showed no cambial variants. However, lobed roots were found in Urvillea rufescens and phloem wedges were observed in Serjania lethalis and Serjania caracasana. Neo-formed peripheral vascular strands and cylinders were common in mature roots of Serjania caracasana, and vascular connections were found uniting the peripheral and central vascular cylinders through phloem wedges, as revealed by anatomical and micro-CT analyses. The vascular connections likely represent another key mechanism to create a network that increases the area of vascular tissue and contributes as an additional conduction pathway within these thick roots. Conclusions Some traits from the lianescent vascular syndrome, such as vessel dimorphism, are present in the roots of lianescent Sapindaceae, while others, such as cambial variants common in the stems, are largely absent.

9.
Ann Bot ; 116(3): 333-58, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26311709

ABSTRACT

BACKGROUND AND AIMS: Phloem evolution has been explored in the literature across very broad scales, either for vascular plants as a whole or for major plant groups, such as the monocotyledons or the former dicotyledons. However, it has never been examined in a way that would elucidate evolutionary shifts leading to the diversification of phloem in single lineages. Therefore, the present study explores in detail the patterns of phloem evolution in the tribe Bignonieae (Bignoniaceae). This group represents a particularly good model for phloem studies since it is known to have a very conspicuous and diverse phloem. METHODS: A total of 19 phloem characters were coded in 56 species from all 21 genera currently recognized in the tribe Bignonieae, accounting for phloem wedge growth and for all the anatomical cell diversity encountered in the phloem. Phloem evolution was explored by reconstructing ancestral character states using maximum-likelihood assumptions with a time-calibrated molecular phylogeny for the group. Directionality and the effect of phylogenetic transformations in the current variation of quantitative traits and evolutionary correlations of selected discrete phloem traits were also tested under a maximum-likelihood approach. KEY RESULTS: Individual phloem features are quite diverse in the tribe, but generally conserved within smaller clades. Contrasting phloem patterns were found when comparing major groups, with certain lineages having the phloem marked by a background of phloem fibres where all other cells are embedded, tangentially arranged sieve tubes and sieve-tubecentric parenchyma. In contrast, other lineages exhibited a scarcely fibrous phloem, regularly stratified phloem, sieve tube elements in radial or diffuse arrangement, and diffuse parenchyma. We found signals of directional evolution in fibre abundance and number of sieve areas, which increased in the 'Fridericia and allies extended clade' and decreased in the 'Multiples of four extended clade', resulting in no signal of directionality when the whole Bignonieae was considered. In contrast, no indication of directional evolution was found for the axial parenchyma, either in single clades within Bignonieae or in the entire tribe. Positive correlation was found between sieve element length and both sieve plate type and the presence of a storied structure. Correlated evolution was also found between fibre abundance and several traits, such as sieve tube arrangement, sieve plate type, parenchyma arrangement, ray lignification and number of companion cells. CONCLUSIONS: The secondary phloem of Bignonieae is extremely diverse, with sister lineages exhibiting distinct phloem anatomies derived from contrasting patterns of evolution in fibre abundance. Fibre abundance in the tribe has diversified in correlation with sieve tube arrangement, sieve tube morphology, number of companion cells and parenchyma type. The results challenge long-standing hypotheses regarding general trends in cell abundance and morphological cell evolution within the phloem, and demonstrate the need to expand studies in phloem anatomy both at a narrow taxonomic scale and at a broad one, such as to families and orders.


Subject(s)
Bignoniaceae/anatomy & histology , Bignoniaceae/growth & development , Biological Evolution , Likelihood Functions , Phloem/anatomy & histology , Phloem/growth & development , Phylogeny
10.
An Acad Bras Cienc ; 85(4): 1461-72, 2013.
Article in English | MEDLINE | ID: mdl-24346798

ABSTRACT

Unlike other arboreal monocotyledons, the secondary growth of palms has for the past 100 years been described as diffuse. Solely cell enlargement and random parenchyma divisions, without the activity of a meristem, characterize such growth. Some previous works of the early 20th century have, however, mentioned the presence of a secondary meristem in the stems of palms, but this information was forgotten since then. Addressing to this question, we analysed palm stems of four species, with the aim to understand the possible presence of such secondary growth. We found that a meristematic band occurs between the cortex and the central cylinder and gives rise to new vascular bundles and parenchyma internally, producing parenchyma and fibres externally. It appears secondarily, i.e., it undergoes meristematic activity in the median and basal stem regions, far away from the apical region. In fact, a meristematic band is present and may be more common than currently believed, but uneasy to detect in certain palms for being restricted to specific regions of their stems. In conclusion, the diffuse secondary thickening is here shown not to be the only mechanism of secondary growth in palms. The presence of a meristem band in the stems of palms merits careful reconsideration.


Subject(s)
Arecaceae/growth & development , Plant Stems/growth & development , Arecaceae/anatomy & histology , Arecaceae/classification , Brazil , Plant Stems/anatomy & histology
11.
Am J Bot ; 98(4): 602-18, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21613161

ABSTRACT

PREMISE OF THE STUDY: The phloem is a plant tissue with a critical role in plant nutrition and signaling. However, little is still known about the evolution of this tissue. In lianas of the Bignoniaceae, two distinct types of phloem coexist: a regular and a variant phloem. The cells associated with these two phloem types are known to be anatomically different; however, it is still unclear what steps were involved in the evolution of such differences. METHODS: Here we studied the anatomical development of the regular and variant phloem in representatives of all 21 genera of Bignonieae and used a phylogenetic framework to investigate the timing of changes associated with the evolution of each phloem type. KEY RESULTS: We found that the variant phloem always appears in a determinate location, between the leaf orthostichies. Furthermore, the variant phloem was mostly occupied by very wide sieve tubes and generally included a higher concentration of fibers, indicating an increase in conduction and mechanical support. On the other hand, the regular phloem included much more parenchyma, more and wider rays, and tiny sieve tubes that resembled terminal sieve tubes from plants with seasonal formation of vascular tissues; these findings suggest reduced conduction and higher storage capacity in the regular phloem. CONCLUSIONS: Overall, differences between the regular and variant phloem increased over time, leading to further specialization in conduction in the variant phloem and an increase in storage specialization in the regular phloem.


Subject(s)
Bignoniaceae/anatomy & histology , Biological Evolution , Phloem/anatomy & histology , Phylogeny , Bignoniaceae/genetics , Phloem/genetics , Plant Leaves/anatomy & histology
12.
Evol Dev ; 11(5): 465-79, 2009.
Article in English | MEDLINE | ID: mdl-19754704

ABSTRACT

Cambial variants represent a form of secondary growth that creates great stem anatomical diversity in lianas. Despite the importance of cambial variants, nothing is known about the developmental mechanisms that may have led to the current diversity seen in these stems. Here, a thorough anatomical analysis of all genera along the phylogeny of Bignonieae (Bignoniaceae) was carried out in order to detect when in their ontogeny and phylogeny there were shifts leading to different stem anatomical patterns. We found that all species depart from a common developmental basis, with a continuous, regularly growing cambium. Initial development is then followed by the modification of four equidistant portions of the cambium that reduce the production of xylem and increase the production of phloem, the former with much larger sieve tubes and an extended lifespan. In most species, the formerly continuous cambium becomes disjunct, with cambial portions within phloem wedges and cambial portions between them. Other anatomical modifications such as the formation of multiples of four phloem wedges, multiple-dissected phloem wedges, and included phloem wedges take place thereafter. The fact that each novel trait raised on the ontogenetic trajectory appeared in subsequently more recent ancestors on the phylogeny suggests a recapitulatory history. This recapitulation is, however, caused by the terminal addition of evolutionary novelties rather than a truly heterochronic process. Truly heterochronic processes were only found in shrubby species, which resemble juveniles of their ancestors, as a result of a decelerated phloem formation by the variant cambia. In addition, the modular evolution of phloem and xylem in Bignonieae seems to indicate that stem anatomical modifications in this group occurred at the level of cambial initials.


Subject(s)
Bignoniaceae/genetics , Evolution, Molecular , Genetic Variation , Phloem/genetics , Plant Stems/genetics , Xylem/genetics , Bignoniaceae/anatomy & histology , Phloem/anatomy & histology , Phylogeny , Plant Stems/anatomy & histology , Xylem/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...