Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS EST Air ; 1(4): 283-293, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633206

ABSTRACT

Global ground-level measurements of elements in ambient particulate matter (PM) can provide valuable information to understand the distribution of dust and trace elements, assess health impacts, and investigate emission sources. We use X-ray fluorescence spectroscopy to characterize the elemental composition of PM samples collected from 27 globally distributed sites in the Surface PARTiculate mAtter Network (SPARTAN) over 2019-2023. Consistent protocols are applied to collect all samples and analyze them at one central laboratory, which facilitates comparison across different sites. Multiple quality assurance measures are performed, including applying reference materials that resemble typical PM samples, acceptance testing, and routine quality control. Method detection limits and uncertainties are estimated. Concentrations of dust and trace element oxides (TEO) are determined from the elemental dataset. In addition to sites in arid regions, a moderately high mean dust concentration (6 µg/m3) in PM2.5 is also found in Dhaka (Bangladesh) along with a high average TEO level (6 µg/m3). High carcinogenic risk (>1 cancer case per 100000 adults) from airborne arsenic is observed in Dhaka (Bangladesh), Kanpur (India), and Hanoi (Vietnam). Industries of informal lead-acid battery and e-waste recycling as well as coal-fired brick kilns likely contribute to the elevated trace element concentrations found in Dhaka.

2.
Sci Rep ; 10(1): 21817, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311638

ABSTRACT

Globally consistent measurements of airborne metal concentrations in fine particulate matter (PM2.5) are important for understanding potential health impacts, prioritizing air pollution mitigation strategies, and enabling global chemical transport model development. PM2.5 filter samples (N ~ 800 from 19 locations) collected from a globally distributed surface particulate matter sampling network (SPARTAN) between January 2013 and April 2019 were analyzed for particulate mass and trace metals content. Metal concentrations exhibited pronounced spatial variation, primarily driven by anthropogenic activities. PM2.5 levels of lead, arsenic, chromium, and zinc were significantly enriched at some locations by factors of 100-3000 compared to crustal concentrations. Levels of metals in PM2.5 and PM10 exceeded health guidelines at multiple sites. For example, Dhaka and Kanpur sites exceeded the US National Ambient Air 3-month Quality Standard for lead (150 ng m-3). Kanpur, Hanoi, Beijing and Dhaka sites had annual mean arsenic concentrations that approached or exceeded the World Health Organization's risk level for arsenic (6.6 ng m-3). The high concentrations of several potentially harmful metals in densely populated cites worldwide motivates expanded measurements and analyses.

3.
Comput Methods Programs Biomed ; 187: 105234, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31794913

ABSTRACT

BACKGROUND AND OBJECTIVE: Surgical skill assessment aims to objectively evaluate and provide constructive feedback for trainee surgeons. Conventional methods require direct observation with assessment from surgical experts which are both unscalable and subjective. The recent involvement of surgical robotic systems in the operating room has facilitated the ability of automated evaluation of the expertise level of trainees for certain representative maneuvers by using machine learning for motion analysis. The features extraction technique plays a critical role in such an automated surgical skill assessment system. METHODS: We present a direct comparison of nine well-known feature extraction techniques which are statistical features, principal component analysis, discrete Fourier/Cosine transform, codebook, deep learning models and auto-encoder for automated surgical skills evaluation. Towards near real-time evaluation, we also investigate the effect of time interval on the classification accuracy and efficiency. RESULTS: We validate the study on the benchmark robotic surgical training JIGSAWS dataset. An accuracy of 95.63, 90.17 and 90.26% by the Principal Component Analysis and 96.84, 92.75 and 95.36% by the deep Convolutional Neural Network for suturing, knot tying and needle passing, respectively, highlighted the effectiveness of these two techniques in extracting the most discriminative features among different surgical skill levels. CONCLUSIONS: This study contributes toward the development of an online automated and efficient surgical skills assessment technique.


Subject(s)
Clinical Competence , Deep Learning , General Surgery/education , Neural Networks, Computer , Robotic Surgical Procedures , Algorithms , Automation , Benchmarking , Cluster Analysis , Databases, Factual , Education, Medical, Graduate , Humans , Machine Learning , Principal Component Analysis , Reproducibility of Results , Surgery, Computer-Assisted/education , Sutures
4.
Environ Sci Technol ; 52(20): 11670-11681, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30215246

ABSTRACT

Exposure to ambient fine particulate matter (PM2.5) is a leading risk factor for the global burden of disease. However, uncertainty remains about PM2.5 sources. We use a global chemical transport model (GEOS-Chem) simulation for 2014, constrained by satellite-based estimates of PM2.5 to interpret globally dispersed PM2.5 mass and composition measurements from the ground-based surface particulate matter network (SPARTAN). Measured site mean PM2.5 composition varies substantially for secondary inorganic aerosols (2.4-19.7 µg/m3), mineral dust (1.9-14.7 µg/m3), residual/organic matter (2.1-40.2 µg/m3), and black carbon (1.0-7.3 µg/m3). Interpretation of these measurements with the GEOS-Chem model yields insight into sources affecting each site. Globally, combustion sectors such as residential energy use (7.9 µg/m3), industry (6.5 µg/m3), and power generation (5.6 µg/m3) are leading sources of outdoor global population-weighted PM2.5 concentrations. Global population-weighted organic mass is driven by the residential energy sector (64%) whereas population-weighted secondary inorganic concentrations arise primarily from industry (33%) and power generation (32%). Simulation-measurement biases for ammonium nitrate and dust identify uncertainty in agricultural and crustal sources. Interpretation of initial PM2.5 mass and composition measurements from SPARTAN with the GEOS-Chem model constrained by satellite-based PM2.5 provides insight into sources and processes that influence the global spatial variation in PM2.5 composition.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols , Dust , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...