Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biomed Eng ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036617

ABSTRACT

The limited availability of cytokines in solid tumours hinders maintenance of the antitumour activity of chimeric antigen receptor (CAR) T cells. Cytokine receptor signalling pathways in CAR T cells can be activated by transgenic expression or injection of cytokines in the tumour, or by engineering the activation of cognate cytokine receptors. However, these strategies are constrained by toxicity arising from the activation of bystander cells, by the suboptimal biodistribution of the cytokines and by downregulation of the cognate receptor. Here we show that replacement of the extracellular domains of heterodimeric cytokine receptors in T cells with two leucine zipper motifs provides optimal Janus kinase/signal transducer and activator of transcription signalling. Such chimeric cytokine receptors, which can be generated for common γ-chain receptors, interleukin-10 and -12 receptors, enabled T cells to survive cytokine starvation without induction of autonomous cell growth, and augmented the effector function of CAR T cells in vitro in the setting of chronic antigen exposure and in human tumour xenografts in mice. As a modular design, leucine zippers can be used to generate constitutively active cytokine receptors in effector immune cells.

2.
Nature ; 609(7925): 174-182, 2022 09.
Article in English | MEDLINE | ID: mdl-36002574

ABSTRACT

The efficacy of adoptive T cell therapies for cancer treatment can be limited by suppressive signals from both extrinsic factors and intrinsic inhibitory checkpoints1,2. Targeted gene editing has the potential to overcome these limitations and enhance T cell therapeutic function3-10. Here we performed multiple genome-wide CRISPR knock-out screens under different immunosuppressive conditions to identify genes that can be targeted to prevent T cell dysfunction. These screens converged on RASA2, a RAS GTPase-activating protein (RasGAP) that we identify as a signalling checkpoint in human T cells, which is downregulated upon acute T cell receptor stimulation and can increase gradually with chronic antigen exposure. RASA2 ablation enhanced MAPK signalling and chimeric antigen receptor (CAR) T cell cytolytic activity in response to target antigen. Repeated tumour antigen stimulations in vitro revealed that RASA2-deficient T cells show increased activation, cytokine production and metabolic activity compared with control cells, and show a marked advantage in persistent cancer cell killing. RASA2-knockout CAR T cells had a competitive fitness advantage over control cells in the bone marrow in a mouse model of leukaemia. Ablation of RASA2 in multiple preclinical models of T cell receptor and CAR T cell therapies prolonged survival in mice xenografted with either liquid or solid tumours. Together, our findings highlight RASA2 as a promising target to enhance both persistence and effector function in T cell therapies for cancer treatment.


Subject(s)
Antigens, Neoplasm , Neoplasms , T-Lymphocytes , ras GTPase-Activating Proteins , Animals , Antigens, Neoplasm/immunology , Bone Marrow , CRISPR-Cas Systems , Disease Models, Animal , Gene Knockdown Techniques , Humans , Immunotherapy, Adoptive , Leukemia/immunology , Leukemia/pathology , Leukemia/therapy , Mice , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Time Factors , Xenograft Model Antitumor Assays , ras GTPase-Activating Proteins/deficiency , ras GTPase-Activating Proteins/genetics
3.
Sci Transl Med ; 13(620): eabh0272, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34788079

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy is revolutionizing cancer immunotherapy for patients with B cell malignancies and is now being developed for solid tumors and chronic viral infections. Although clinical trials have demonstrated the curative potential of CAR T cell therapy, a substantial and well-established limitation is the heightened contraction and transient persistence of CAR T cells during prolonged antigen exposure. The underlying mechanism(s) for this dysfunctional state, often termed CAR T cell exhaustion, remains poorly defined. Here, we report that exhaustion of human CAR T cells occurs through an epigenetic repression of the T cell's multipotent developmental potential. Deletion of the de novo DNA methyltransferase 3 alpha (DNMT3A) in T cells expressing first- or second-generation CARs universally preserved the cells' ability to proliferate and mount an antitumor response during prolonged tumor exposure. The increased functionality of the exhaustion-resistant DNMT3A knockout CAR T cells was coupled to an up-regulation of interleukin-10, and genome-wide DNA methylation profiling defined an atlas of genes targeted for epigenetic silencing. This atlas provides a molecular definition of CAR T cell exhaustion, which includes many transcriptional regulators that limit the "stemness" of immune cells, including CD28, CCR7, TCF7, and LEF1. Last, we demonstrate that this epigenetically regulated multipotency program is firmly coupled to the clinical outcome of prior CAR T cell therapies. These data document the critical role epigenetic mechanisms play in limiting the fate potential of human T cells and provide a road map for leveraging this information for improving CAR T cell efficacy.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , CD28 Antigens , Epigenesis, Genetic , Humans , Neoplasms/therapy , T-Lymphocytes , Xenograft Model Antitumor Assays
4.
Cancer Immunol Res ; 9(3): 279-290, 2021 03.
Article in English | MEDLINE | ID: mdl-33355188

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy has had limited success in early-phase clinical studies for solid tumors. Lack of efficacy is most likely multifactorial, including a limited array of targetable antigens. We reasoned that targeting the cancer-specific extra domain B (EDB) splice variant of fibronectin might overcome this limitation because it is abundantly secreted by cancer cells and adheres to their cell surface. In vitro, EDB-CAR T cells recognized and killed EDB-positive tumor cells. In vivo, 1 × 106 EDB-CAR T cells had potent antitumor activity in both subcutaneous and systemic tumor xenograft models, resulting in a significant survival advantage in comparison with control mice. EDB-CAR T cells also targeted the tumor vasculature, as judged by IHC and imaging, and their antivascular activity was dependent on the secretion of EDB by tumor cells. Thus, targeting tumor-specific splice variants such as EDB with CAR T cells is feasible and has the potential to improve the efficacy of CAR T-cell therapy.


Subject(s)
Fibronectins/antagonists & inhibitors , Immunotherapy, Adoptive/methods , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/therapy , T-Lymphocytes/transplantation , Animals , Antigens, Neoplasm , Cell Line, Tumor , Coculture Techniques , Feasibility Studies , Fibronectins/genetics , Fibronectins/immunology , Fibronectins/metabolism , Healthy Volunteers , Human Umbilical Vein Endothelial Cells , Humans , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , Neoplasms/immunology , Neoplasms/pathology , Primary Cell Culture , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/metabolism , RNA Splicing , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...