Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Ecancermedicalscience ; 18: 1688, 2024.
Article in English | MEDLINE | ID: mdl-38566768

ABSTRACT

Introduction: Cancer is the second leading cause of mortality with over 19 million cases and 10 million deaths worldwide. Available data on cancer patterns in Uganda are through modelling of data from two population-based cancer registries (PBCRs) representing only about 10% of the cancer situation in Uganda. This study sought to determine the common types of cancer among adults and children in Arua District over a 5-year period (2017-2021). Methods: Retrospective cohort chart review and 'catchment population approach' were employed. All newly diagnosed cancer patients from Arua between 2017 and 2021 were included in this study. Data were collected using Redcap whereas management and analysis were conducted using Stata 17. Cancer patterns were computed as frequencies and percentages and the interest was in finding out the common cancers among adults (above 19 years) and children (0-19 years). Results: Over the 5-year study period, a total of 1,118 new cancer cases were registered, with slightly more females (52.1%). The top five common cancers irrespective of sex and age were: liver cancer (13.7%), cervical (11.8%), breast (10.7%), oesophagus (10.5%) and Burkitt's lymphoma (BL) (6.4%). In this study, 15.3% (n = 171) of the study participants were children. The top five common childhood cancers included BL (42%), leukemia (10.5%), other lymphomas (9.4%), osteosarcoma (4.7%) and nephroblastoma (3%). Conclusion: There is a high incidence of liver cancer in Arua district. The high levels of cervical, breast and oesophagus cancer were consistent with what is reported by the two PBCRs in Uganda. However, BL could be due to the presence of a BL treatment centre at Kuluva hospital in Arua. Cancer interventions in Arua should therefore be targeted towards liver, cervix, breast, and oesophagus cancer and furthering research on the reason for the high incidence of liver cancer.

2.
BMC Infect Dis ; 22(1): 869, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36411415

ABSTRACT

BACKGROUND: Epidemiology of febrile illness in Uganda is shifting due to increased HIV treatment access, emerging viruses, and increased surveillance. We investigated the aetiology and outcomes of acute febrile illness in adults presenting to hospital using a standardized testing algorithm of available assays in at Arua and Mubende tertiary care hospitals in Uganda. METHODS: We recruited adults with a ≥ 38.0 °C temperature or history of fever within 48 h of presentation from August 2019 to August 2020. Medical history, demographics, and vital signs were recorded. Testing performed included a complete blood count, renal and liver function, malaria smears, blood culture, and human immunodeficiency virus (HIV). When HIV positive, testing included cryptococcal antigen, CD4 count, and urine lateral flow lipoarabinomannan assay for tuberculosis. Participants were followed during hospitalization and at a 1-month visit. A Cox proportional hazard regression was performed to evaluate for baseline clinical features and risk of death. RESULTS: Of 132 participants, the median age was 33.5 years (IQR 24 to 46) and 58.3% (n = 77) were female. Overall, 73 (55.3%) of 132 had a positive microbiologic result. Among those living with HIV, 31 (68.9%) of 45 had at least one positive assay; 16 (35.6%) had malaria, 14 (31.1%) tuberculosis, and 4 (8.9%) cryptococcal antigenemia. The majority (65.9%) were HIV-negative; 42 (48.3%) of 87 had at least one diagnostic assay positive; 24 (27.6%) had positive malaria smears and 1 was Xpert MTB/RIF Ultra positive. Overall, 16 (12.1%) of 132 died; 9 (56.3%) of 16 were HIV-negative, 6 died after discharge. High respiratory rate (≥ 22 breaths per minute) (hazard ratio [HR] 8.05; 95% CI 1.81 to 35.69) and low (i.e., < 92%) oxygen saturation (HR 4.33; 95% CI 1.38 to 13.61) were identified to be associated with increased risk of death. CONCLUSION: In those with hospitalized fever, malaria and tuberculosis were common causes of febrile illness, but most deaths were non-malarial, and most HIV-negative participants did not have a positive diagnostic result. Those with respiratory failure had a high risk of death.


Subject(s)
HIV Infections , Tuberculosis , Adult , Humans , Female , Male , Uganda/epidemiology , Tertiary Care Centers , Tuberculosis/diagnosis , HIV Infections/epidemiology , HIV Infections/complications , Hospitalization , Fever/etiology , Fever/complications
3.
Health Secur ; 16(S1): S76-S86, 2018.
Article in English | MEDLINE | ID: mdl-30480504

ABSTRACT

Global health security depends on effective surveillance for infectious diseases. In Uganda, resources are inadequate to support collection and reporting of data necessary for an effective and responsive surveillance system. We used a cross-cutting approach to improve surveillance and laboratory capacity in Uganda by leveraging an existing pediatric inpatient malaria sentinel surveillance system to collect data on expanded causes of illness, facilitate development of real-time surveillance, and provide data on antimicrobial resistance. Capacity for blood culture collection was established, along with options for serologic testing for select zoonotic conditions, including arboviral infection, brucellosis, and leptospirosis. Detailed demographic, clinical, and laboratory data for all admissions were captured through a web-based system accessible at participating hospitals, laboratories, and the Uganda Public Health Emergency Operations Center. Between July 2016 and December 2017, the expanded system was activated in pediatric wards of 6 regional government hospitals. During that time, patient data were collected from 30,500 pediatric admissions, half of whom were febrile but lacked evidence of malaria. More than 5,000 blood cultures were performed; 4% yielded bacterial pathogens, and another 4% yielded likely contaminants. Several WHO antimicrobial resistance priority pathogens were identified, some with multidrug-resistant phenotypes, including Acinetobacter spp., Citrobacter spp., Escherichia coli, Staphylococcus aureus, and typhoidal and nontyphoidal Salmonella spp. Leptospirosis and arboviral infections (alphaviruses and flaviviruses) were documented. The lessons learned and early results from the development of this multisectoral surveillance system provide the knowledge, infrastructure, and workforce capacity to serve as a foundation to enhance the capacity to detect, report, and rapidly respond to wide-ranging public health concerns in Uganda.


Subject(s)
Capacity Building/methods , Global Health , Laboratories/standards , Population Surveillance/methods , Security Measures , Child , Communicable Diseases/epidemiology , Data Collection/methods , Hospitals , Humans , Pediatrics , Public Health , Uganda/epidemiology
4.
Article in English | MEDLINE | ID: mdl-30486291

ABSTRACT

Air pollution is a major cause of sub-optimal lung function and lung diseases in childhood and adulthood. In this study we compared the lung function (measured by spirometry) of 537 Ugandan children, mean age 11.1 years in sites with high (Kampala and Jinja) and low (Buwenge) ambient air pollution levels, based on the concentrations of particulate matter smaller than 2.5 micrometres in diameter (PM2.5). Factors associated with lung function were explored in a multiple linear regression model. PM2.5 level in Kampala, Jinja and Buwenge were 177.5 µg/m³, 96.3 µg/m³ and 31.4 µg/m³ respectively (p = 0.0000). Respectively mean forced vital capacity as % of predicted (FVC%), forced expiratory volume in one second as % of predicted (FEV1%) and forced expiratory flow 25⁻75% as % of predicted (FEF25⁻75%) of children in high ambient air pollution sites (Kampala and Jinja) vs. those in the low ambient air pollution site (Buwenge subcounty) were: FVC% (101.4%, vs. 104.0%, p = 0.043), FEV1% (93.9% vs. 98.0, p = 0.001) and FEF25⁻75% (87.8 vs. 94.0, p = 0.002). The proportions of children whose %predicted parameters were less than 80% predicted (abnormal) were higher among children living in high ambient air pollution than those living in lower low ambient air pollutions areas with the exception of FVC%; high vs. low: FEV1 < 80%, %predicted (12.0% vs. 5.3%, p = 0.021) and FEF25⁻75 < 80%, %predicted (37.7% vs. 29.3%, p = 0.052) Factors associated with lung function were (coefficient, p-value): FVC% urban residence (-3.87, p = 0.004), current cough (-2.65, p = 0.048), underweight (-6.62, p = 0.000), and overweight (11.15, p = 0.000); FEV1% underweight (-6.54, p = 0.000) and FEF25⁻75% urban residence (-8.67, p = 0.030) and exposure to biomass smoke (-7.48, p = 0.027). Children in study sites with high ambient air pollution had lower lung function than those in sites with low ambient air pollution. Urban residence, underweight, exposure to biomass smoke and cough were associated with lower lung function.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , Environmental Exposure/adverse effects , Forced Expiratory Volume/physiology , Particulate Matter/adverse effects , Vital Capacity/physiology , Air Pollutants/analysis , Air Pollution/analysis , Child , Cross-Sectional Studies , Environmental Exposure/analysis , Environmental Monitoring/methods , Female , Humans , Linear Models , Male , Particulate Matter/analysis , Respiratory Function Tests , Risk Assessment/methods , Spirometry , Uganda , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL
...