Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 653: 123872, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38336178

ABSTRACT

Cardiotoxicity (CT) is a severe condition that negatively impacts heart function. ß-sitosterol (BS) is a group of phytosterols and known for various pharmacological benefits, such as managing diabetes, cardiac protection, and neuroprotection. This study aims to develop niosomes (NS) containing BS, utilizing cholesterol as the lipid and Tween 80 as the stabilizer. The research focuses on designing and evaluating both conventional BS-NS and hyaluronic acid (HA) modified NS (BS-HA-NS) to enhance the specificity and efficacy of BS within cardiac tissue. The resulting niosomal formulation was spherical, with a size of about 158.51 ± 0.57 nm, an entrapment efficiency of 93.56 ± 1.48 %, and a drug loading of 8.07 ± 1.62 %. To evaluate cytotoxicity on H9c2 heart cells, the MTT assay was used. The cellular uptake of BS-NS and BS-HA-NS was confirmed by confocal microscopy on H9c2 cardiac cells. Administering BS-NS and BS-HA-NS intravenously at a dose of 10 mg/kg showed the ability to significantly decrease the levels of cardiac troponin-I (cTn-I), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and lipid peroxidation (MDA). Tissue histopathology indicated a substantial potential for repairing cardiac tissue after treatment with BS-NS and BS-HA-NS and strong cardioprotection against ISO induced myocardial tissue damages. Thus, enhancing BS's therapeutic effectiveness through niosome surface modification holds promise for mitigating cardiac damage resulting from CT.


Subject(s)
Cardiotoxicity , Myocardial Infarction , Sitosterols , Rats , Animals , Isoproterenol/metabolism , Isoproterenol/pharmacology , Cardiotoxicity/drug therapy , Cardiotoxicity/prevention & control , Liposomes/pharmacology , Cardiotonic Agents/pharmacology , Myocardial Infarction/drug therapy , Myocardium/pathology , Antioxidants/pharmacology , Oxidative Stress
2.
Nanomedicine (Lond) ; 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38223987

ABSTRACT

Aim: Encapsulating epigallocatechin-3-gallate (EGCG) in pH-sensitive polymeric nanoparticles for targeted delivery of drugs could revolutionize colorectal cancer treatment. Materials & methods: Nanoparticles were synthesized to release drugs at colon pH. Dynamic light scattering measured their average diameter and ζ-potential, while differential scanning calorimetry and x-ray diffraction assessed EGCG encapsulation. Results: The nanoparticles showed stability and bioavailability in the gastrointestinal tract, efficiently encapsulating and releasing over 93% of EGCG at pH 7.2. They enhanced cytotoxicity against HT-29 cells and demonstrated antibacterial properties, increasing apoptosis and cell cycle arrest. Conclusion: The study underscores the potential of nanoparticles in enhancing EGCG delivery for colorectal cancer therapy, aiming to minimize side effects and improve therapeutic outcomes.

3.
J Cancer Res Clin Oncol ; 149(19): 17607-17634, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37776358

ABSTRACT

Photodynamic therapy (PDT) is a promising cancer treatment that kills cancer cells selectively by stimulating reactive oxygen species generation with photosensitizers exposed to specific light wavelengths. 5-aminolevulinic acid (5-ALA) is a widely used photosensitizer. However, its limited tumour penetration and targeting reduce its therapeutic efficacy. Scholars have investigated nano-delivery techniques to improve 5-ALA administration and efficacy in PDT. This review summarises recent advances in biological host biosynthetic pathways and regulatory mechanisms for 5-ALA production. The review also highlights the potential therapeutic efficacy of various 5-ALA nano-delivery modalities, such as nanoparticles, liposomes, and gels, in treating various cancers. Although promising, 5-ALA nano-delivery methods face challenges that could impair targeting and efficacy. To determine their safety and biocompatibility, extensive preclinical and clinical studies are required. This study highlights the potential of 5-ALA-NDSs to improve PDT for cancer treatment, as well as the need for additional research to overcome barriers and improve medical outcomes.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Aminolevulinic Acid/therapeutic use , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Neoplasms/drug therapy , Cell Line, Tumor , Protoporphyrins/metabolism , Protoporphyrins/therapeutic use
4.
Int J Biol Macromol ; 245: 125529, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37379942

ABSTRACT

The objective of this investigation was to fabricate nanoparticles consisting of Imatinib mesylate-poly sarcosine-loaded chitosan/carrageenan in order to attain prolonged drug release and efficacious therapy for colorectal cancer. The study involved the synthesis of nanoparticles through the utilisation of ionic complexation and nanoprecipitation techniques. The subsequent nanoparticles were subjected to an assessment of their physicochemical characteristics, anti-cancer efficacy using HCT116 cell line, and acute toxicity. The present study examined two distinct nanoparticle formulations, namely IMT-PSar-NPs and CS-CRG-IMT-NPs, with respect to their particle size, zeta potential, and morphology. Both formulations demonstrated satisfactory characteristics, as they displayed consistent and prolonged drug release for a duration of 24 h, with the highest level of release occurring at a pH of 5.5. The efficacy and safety of IMT-PSar-NPs and CS-CRG-IMT-PSar-NPs nanoparticles were evaluated through various tests including in vitro cytotoxicity, cellular uptake, apoptosis, scratch test, cell cycle analysis, MMP & ROS estimate, acute toxicity, and stability tests. The results suggest that these nanoparticles were well fabricated and have promising potential for in vivo applications. The prepared polysaccharide nanoparticles have great potential for active targeting and could potentially reduce dose-dependent toxicity in the treatment of colon cancer.

5.
Biomed Mater ; 18(3)2023 03 27.
Article in English | MEDLINE | ID: mdl-36921352

ABSTRACT

The morbidity rate following a surgical procedure increasing rapidly in the cases associated with surgical site infections. Traditional sutures lack the ability to deliver drugs as the incorporation of the drug in their structure would hamper their mechanical properties. To prevent such infections, we developed an extracellular matrix mimicking electrospun nanofibrous yarns of poly-(D,L)-lactic acid and polyvinyl alcohol loaded with vancomycin and ferulic acid, prepared by uniaxial electrospinning technique.In-vitrocharacterization such as scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, tensile strength testing, degradation studies, and antimicrobial studies along within-vivoevaluation done with help of incision wound healing rat model and simultaneous testing of microbial load in the incised tissue. Thein-vitrostudies indicated the nanofiber yarns have size range 200-300 nm with a tensile strength of 7.54 ± 0.58 MPa. The dual drug-loaded yarn showed sustained drug release over a period of 48 h.In-vitrowater uptake and biodegradation data indicated optimum results suitable for suturing applications. Antimicrobial study showed excellent antimicrobial activity against bothS. aureus and E. coli.Results obtained fromin-vivostudy suggested excellent wound healing potential of nanofiber yarns as compared with commercial silk sutures. The histopathological studies confirmed restoring ability of nanofiber yarn to the normal skin structure. Enzyme-linked immunosorbent assay (ELISA) study revealed the downregulation of inflammatory markers i.e. TNF-alpha and IL-6, making nanofibers sutures suitable for surgical wound healing applications. Overall, the present study may conclude that the developed dual drug-loaded nanofiber yarns have excellent potential in surgical wound healing applications.


Subject(s)
Anti-Infective Agents , Nanofibers , Surgical Wound , Rats , Animals , Nanofibers/chemistry , Escherichia coli , Surgical Wound/drug therapy , Wound Healing , Anti-Bacterial Agents/chemistry
6.
Mol Pharm ; 20(2): 997-1014, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36630478

ABSTRACT

Psoriasis is an autoimmune skin disease that generally affects 1%-3% of the total population globally. Effective treatment of psoriasis is limited because of numerous factors, such as ineffective drug delivery and efficacy following conventional pharmaceutical treatments. Nanofibers are widely being used as nanocarriers for effective treatment because of their multifunctional and distinctive properties, including a greater surface area, higher volume ratio, increased elasticity and improved stiffness and resistance to traction, favorable biodegradability, high permeability, and sufficient oxygen supply, which help maintain the moisture content of the skin and improve the bioavailability of the drugs. Similar to the extracellular matrix, nanofibers have a regeneration capacity, promoting cell growth, adhesion, and proliferation, and also have a more controlled release pattern compared with that of other conventional therapies at the psoriatic site. To ensure improved drug targeting and better antipsoriatic efficacy, this study formulated and evaluated a tazarotene (TZT)-calcipotriol (CPT)-loaded nanofiber and carbopol-based hydrogel film. The nanofiber was prepared using electrospinning with a polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) K-90 polymeric blend that was later incorporated into a carbopol base to form hydrogel films. The prepared nanofibers were biochemically evaluated and in vitro and in vivo characterized. The mean diameters of the optimized formulation, i.e., TZT-loaded polyvinyl alcohol/polyvinylpyrrolidone nanofiber (TZT-PVA/PVP-NF) and TZT-CPT-loaded polyvinyl alcohol/polyvinylpyrrolidone nanofiber (TZT-CPT-PVA/PVP-NF) were 244.67 ± 58.11 and 252.31 ± 35.50 nm, respectively, as determined by scanning electron microscopy, and their tensile strength ranged from 14.02 ± 0.54 to 22.50 ± 0.03 MPa. X-ray diffraction revealed an increase in the amorphous nature of the nanofibers. The biodegradability studies of prepared nanofiber formulations, irrespective of their composition, showed that these completely biodegraded within 2 weeks of their application. The TZT-CPT-PVA/PVP-NF nanofibers exhibited 95.68% ± 0.03% drug release at the end of 72 h, indicating a controlled release pattern and following Higuchi release kinetics as a best-fit model. MTT assay, antioxidant and lipid profile tests, splenomegaly assessment, and weight fluctuation were all performed in the in vitro as well as in vivo studies. We found that the TZT-CPT-PVA/PVP-NF-based hydrogel film has high potential for antipsoriatic activity in imiquimod-induced Wistar rats in comparison with that of TT-PVA/PVP-NF nanofibers.


Subject(s)
Nanofibers , Psoriasis , Rats , Animals , Polyvinyl Alcohol/chemistry , Nanofibers/chemistry , Povidone/chemistry , Delayed-Action Preparations , Rats, Wistar , Psoriasis/drug therapy
7.
J Indian Soc Periodontol ; 26(4): 378-383, 2022.
Article in English | MEDLINE | ID: mdl-35959308

ABSTRACT

Background: The present study was intended to comparatively assess the efficacy of ganglioside polymeric nanoparticle-coated 0.25% satranidazole-loaded nanoparticles in gel form with that of the commercially available 1% metronidazole gel as a local drug delivery (LDD) agent for the treatment of periodontal pockets. Materials and Methods: A split-mouth randomized clinical trial was carried out in 46 chronic periodontitis patients with probing pocket depth (PPD) ≥4 mm or clinical attachment loss greater than 3 mm on both quadrants of the same arch. Full-mouth scaling and root planing (SRP) was performed for all the patients followed by application of 0.25% satranidazole-loaded nanoparticles in gel form on one site (Group 1) and commercially available 1% metronidazole gel on another site (Group 2). Clinical parameters (gingival index, plaque index, PPD, clinical attachment level gain, and bleeding on probing) and microbiological analysis of the subgingival plaque samples were performed and assessed at baseline, after SRP, 21st day, and 90th day post treatment. Unpaired "t"-test and ANOVA tests were used for intergroup and intragroup comparison of recorded parameters. Results: The results showed that the satranidazole-loaded nanoparticle group as an adjunct to SRP in chronic periodontitis showed a statistically significant improvement in all the clinical parameters and a fewer relapse of microbial flora in comparison with the metronidazole group as an LDD agent. Conclusion: The present study depicted that both the LDD agents showed an effective improvement of clinical as well as microbiological parameters, but the satranidazole group consistently produced better results than the metronidazole group and hence has a promising future as an LDD agent in treating periodontal pockets.

8.
Drug Deliv ; 29(1): 1060-1074, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35363113

ABSTRACT

This study focused on gemcitabine (GTB) delivery of cationic polymeric nanoparticles to treat ovarian cancer in order to promote effective localized delivery and drug retention during biological discharge. To begin, four GTB-loaded polymer nanoparticles were prepared: chitosan nanoparticles (CS-NPs), polysarcosin nanoparticles (PSar-NPs), poly-l-lysine & polysarcosin nanoparticles (PLL-PSar-NPs), and chitosan & polysarcosin nanoparticles (CS-PSar-NPs). Based on preliminary particle size, zeta potential, encapsulation efficiency, DSC, surface morphology, release profiling, and cellular internalization studies using rhodamine 123 and Nile red fluorescent markers, it was hypothesized that CS-PSar-NPs could be the best cationic formulation with strong biocompatibility and anticancer activity against the OVCAR-8 ovarian cancer cell line. To improve effective targeting, cellular penetration, and in vitro cytotoxicity, epidermal growth factor receptor variation III (EGFRvIII) is attached over all four polymeric nanoparticles. Confocal imaging revealed that EGFRvIII-conjugated cationic GTB polymeric nanoparticles had a greater cellular uptake and double internalization capabilities than unconjugated nanoparticles, as well as time-dependent cell entrance. GTB and EGFRvIII-conjugated polymer nanoparticles would have a stronger potential to infiltrate ovarian cancer cells during the first hour of incubation. According to TEM and FTIR findings, EGFRvIII conjugation across the non-target CS-PSar-NP surface was successful, making CS-PSar-NPS-EGFRvIII more target-specific and thus a safer drug delivery candidate for ovarian cancer treatment.HighlightsGTB loaded non-target CS-PSar-NPs & active targeted CS-PSar-NPs-EGFRvII developed.SEM, AFM, DSC, particle size, zeta potential, internalization performed for CS-PSar-NPs.MTT & CLSM study confirmed CS-PSar-NPS-EGFRvII was binding specific to OVCAR-8 cellsFabrication of EGFRvII over nanoparticles confirmed by TEM.CS-PSar-NPS-EGFRvII safer candidate for ovarian cancer.


Subject(s)
Chitosan , Nanoparticles , Ovarian Neoplasms , Chitosan/chemistry , Deoxycytidine/analogs & derivatives , Drug Carriers/chemistry , Humans , Nanoparticles/chemistry , Ovarian Neoplasms/drug therapy , Gemcitabine
9.
Drug Deliv Transl Res ; 11(1): 305-317, 2021 02.
Article in English | MEDLINE | ID: mdl-32519201

ABSTRACT

Biofilm mediated bacterial infections are the key factors in the progression of infectious diseases due to the evolution of antimicrobial resistance. Traditional therapy involving antibiotics is not adequate enough for treatment of such infections due to the increased resistance triggered by biofilm. To overcome this challenge, we developed anacardic acid (Ana) loaded solid lipid nanoparticles (SLNs), further coated with chitosan and DNase (Ana-SLNs-CH-DNase). The DNase coating was hypothesized to degrade the e-DNA, while chitosan was coated to yield positively charged SLNs with additional adhesion to biofilms. The SLNs were developed using homogenization method and further evaluated for particle size, polydispersity index, zeta potential, and entrapment efficiency. Drug excipient compatibility was confirmed by using FT-IR study, while encapsulation of Ana in SLNs was confirmed by X-ray diffraction study. The SLNs demonstrated sustained release for up to 24 h and excellent stability at room temperature for up to 3 months. The developed SLNs were found non-toxic against human immortalized keratinocyte (HaCaT) cells while demonstrated remarkably higher antimicrobial efficacy against Staphylococcus aureus. Excellent effect of the developed SLNs on minimum biofilm inhibition concentration and minimum biofilm eradication concentration further confirmed the superiority of the developed formulation strategy. A significant (p < 0.05) reduction in biofilm thickness and biomass, as confirmed by confocal laser scanning microscopy, was observed in the case of developed SLNs in comparison with control. Cumulatively, the results suggest the enhanced efficacy of the developed formulation strategy to overcome the biofilm-mediated antimicrobial resistance. Graphical abstract.


Subject(s)
Chitosan , Nanoparticles , Anacardic Acids , Biofilms , Deoxyribonucleases , Drug Carriers , Excipients , Humans , Lipids , Particle Size , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus
10.
Mol Pharm ; 16(9): 3916-3925, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31318574

ABSTRACT

Biofilm resistance is one of the severe complications associated with chronic wound infections, which impose extreme microbial tolerance against antibiotic therapy. Interestingly, deoxyribonuclease-I (DNase-I) has been empirically proved to be efficacious in improving the antibiotic susceptibility against biofilm-associated infections. DNase-I hydrolyzes the extracellular DNA, a key component of the biofilm responsible for the cell adhesion and strength. Moreover, silver sulfadiazine, a frontline therapy in burn wound infections, exhibits delayed wound healing due to fibroblast toxicity. In this study, a chitosan gel loaded with solid lipid nanoparticles of silver sulfadiazine (SSD-SLNs) and supplemented with DNase-I has been developed to reduce the fibroblast cytotoxicity and overcome the biofilm-imposed resistance. The extensive optimization using the Box-Behnken design (BBD) resulted in the formation of SSD-SLNs with a smooth surface as confirmed by scanning electron microscopy and controlled release (83%) for up to 24 h. The compatibility between the SSD and other formulation excipients was confirmed by Fourier transform infrared, differential scanning calorimetry, and powder X-ray diffraction studies. Developed SSD-SLNs in combination with DNase-I inhibited around 96.8% of biofilm of Pseudomonas aeruginosa as compared to SSD with DNase-I (82.9%). In line with our hypothesis, SSD-SLNs were found to be less toxic (cell viability 90.3 ± 3.8% at 100 µg/mL) in comparison with SSD (Cell viability 76.9 ± 4.2%) against human dermal fibroblast cell line. Eventually, the results of the in vivo wound healing study showed complete wound healing after 21 days' treatment with SSD-SLNs along with DNase-I, whereas marketed formulations SSD and SSD-LSNs showed incomplete healing after 21 days. Data in hand suggest that the combination of SSD-SLNs with DNase-I is an effective treatment strategy against the biofilm-associated wound infections and accelerates wound healing.


Subject(s)
Biofilms/drug effects , Deoxyribonuclease I/pharmacology , Drug Delivery Systems/methods , Nanoparticles/chemistry , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/physiology , Silver Sulfadiazine/pharmacology , Wound Healing/drug effects , Wound Infection/drug therapy , Animals , Cell Survival/drug effects , Cells, Cultured , Chitosan/chemistry , Deoxyribonuclease I/chemistry , Drug Compounding/methods , Excipients/chemistry , Fibroblasts/metabolism , Humans , Male , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , Rats , Rats, Wistar , Silver Sulfadiazine/chemistry , Skin/cytology , Treatment Outcome
11.
J Pharm Sci ; 108(9): 2905-2916, 2019 09.
Article in English | MEDLINE | ID: mdl-30978345

ABSTRACT

The study was designed to fabricate the moxifloxacin nanostructured lipid carriers (MOX-NLCs) loaded in situ gel for opthalmic application to improve the corneal permeation and retention and also subside the toxic effect associated with intracameral injection of moxifloxacin in endophthalmitis treatment. Initially, Box-Behnken design was used to optimize the various factors significantly affecting the final formulation attributes. MOX-NLCs with particle size 232.1 ± 9.2 nm, polydispersity index 0.247 ± 0.031, zeta potential -16.3 ± 1.6 mV, entrapment efficiency 63.1 ± 2.4%, and spherical shape was achieved. The optimized MOX-NLCs demonstrated the Higuchi release kinetics with highest regression coefficient. Besides this, FTIR, differential scanning calorimetry, and X-ray diffraction results suggested that MOX had excellent compatibility with excipients. Furthermore, the results of ex-vivo permeation study demonstrated 2-fold higher permeation (208.7 ± 17.6 µg), retention (37.26 ± 2.83 µg), and flux (9.57 ± 0.73 µg/cm2 h) compared with free MOX in situ gel. In addition, MOX-NLCs exhibited normal corneal hydration and did not show any sign of structural damage to the corneal tissue as confirmed by histology. Therefore, the findings strongly suggest that MOX-NLCs in situ gel with higher permeation and retention can be a better alternative strategy to prevent and treat the endophthalmitis infection.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Cornea/metabolism , Drug Carriers/chemistry , Lipids/chemistry , Moxifloxacin/pharmacokinetics , Administration, Ophthalmic , Alginates/chemistry , Animals , Anti-Bacterial Agents/administration & dosage , Calorimetry, Differential Scanning , Drug Liberation , Drug Stability , Endophthalmitis/drug therapy , Endophthalmitis/microbiology , Gels , Goats , Humans , Hypromellose Derivatives/chemistry , Microbial Sensitivity Tests , Moxifloxacin/administration & dosage , Nanoparticles/chemistry , Permeability , Staphylococcus aureus/drug effects , X-Ray Diffraction
12.
Int J Pharm ; 563: 30-42, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30926526

ABSTRACT

Dense colonization of mucoid Pseudomonas aeruginosa within the self-secreted extracellular matrix (mainly alginate), called biofilm, is a principal reason for the failure of antimicrobial therapy in cystic fibrotic patients. Alginate is a key component in the biofilm of mucoid P. aeruginosa and responsible for surface adhesion and stabilization of biofilm. To overcome this problem, alginate lyase functionalized chitosan nanoparticles of ciprofloxacin were developed for the effective treatment of P. aeruginosa infection in cystic fibrosis patients. The developed nanoparticles were found to have desired quality attributes and demonstrated sustained release following the Higuchi release kinetics. Drug compatibility with the chitosan was confirmed by FTIR while powder X-ray diffraction analysis confirmed the entrapment of drug within the nanoparticle matrix. Lactose adsorbed NPs showed promising aerodynamic property. Nanoparticles showed prolonged MIC and significant reduction in biofilm aggregation and formation in planktonic bacterial suspension. Nanoparticles exhibited significantly higher inhibitory effect against biofilm of P. aeruginosa and reduced the biomass, thickness and density confirmed by confocal microscopy. Furthermore, developed nanoparticles were haemocompatible and did not exhibit any toxicity in vitro MTT assay and in vivo on lungs male Wistar rats. The data in hand collectively suggest the proposed strategy a better alternative for the effective treatment of cystic fibrosis infections.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Chitosan/administration & dosage , Ciprofloxacin/administration & dosage , Enzymes, Immobilized/administration & dosage , Nanoparticles/administration & dosage , Polysaccharide-Lyases/administration & dosage , Animals , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Chitosan/chemistry , Ciprofloxacin/chemistry , Cystic Fibrosis/drug therapy , Drug Liberation , Enzymes, Immobilized/chemistry , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Lung/drug effects , Male , Nanoparticles/chemistry , Platelet Aggregation/drug effects , Polysaccharide-Lyases/chemistry , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...