Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
J Contam Hydrol ; 255: 104143, 2023 04.
Article in English | MEDLINE | ID: mdl-36773413

ABSTRACT

This study presents the use of organic gel-forming material for the construction of hydraulic barriers in aquifer, which can be easily removed after use. Experiments on the performance of the temporary hydraulic barrier during NAPL removal (aquifer flushing) were also conducted. An aqueous solution of sodium alginate was injected into the horizontally oriented, 2-dimensional flow chamber packed with sand, followed by gelation using a calcium solution. The alginate gel formed in the porous media produced a circular shape barrier (24 cm diameter, 1.3 cm thickness) that was successfully removed using sodium bicarbonate solution (1.0 M) in 72 h, whereas the gel was stable for 7 days during simulated groundwater flushing at the same flow rate as the sodium bicarbonate solution. When circular hydraulic barriers (12 cm diameter each, 14 cm apart) were set on either side of the NAPL (n-hexane and PCE mixture)-contaminated zone, the increased water flux during water flushing resulted in significantly increased PCE removal by almost 108%. When a surfactant solution (sodium dodecyl sulfate, 0.037%) was applied, the influenced groundwater flow controlled by hydraulic barriers on the NAPL removal was amplified by 196% removal.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Sodium Bicarbonate , Surface-Active Agents , Water
2.
J Contam Hydrol ; 248: 104002, 2022 06.
Article in English | MEDLINE | ID: mdl-35395442

ABSTRACT

The surfactant-enhanced gas sparging process designed to specifically target the source zone of an organic contaminant in an aquifer with minimal usage of injected additives was investigated using a physical model. Aqueous solutions of the anionic surfactant Sodium dodecylbenzne sulfonate (SDBS) and/or the thickener Sodium carboxymethylcellulose (SCMC) were applied in a contaminated horizontal layer in the simulated laboratory aquifer model followed by gas sparging. Fluorescein sodium salt (FSS) was added to the SDBS/SCMC solutions and represented the organic contaminant. Air and ozone were injected to generate gas sparging. A modified surfactant-enhanced ozone sparging method was also tested by applying additional air venting ports installed in the aquifer above the gas injection zone. Both non-aqueous phase liquid (NAPL) and water-dissolved TCA were applied to the SDBS-applied region to evaluate the removal of contaminants during gas sparging. A significant expansion of the de-saturated zone for the SDBS-applied region was observed during air sparging. During ozone sparging, the fluorescence by FSS in the SDBS-applied layer disappeared over a much wider range than that of the control experiment. SCMC application enhanced the performance of the SDBS-applied gas sparging process. The TCA mass removed by volatilization during air sparging from the SDBS-applied layer was 2.3 times the application in the absence of SDBS. Among five regions of injected NAPL contamination located above the single gas injection port, and during 2 h of ozone sparging, with SDBS applied, more than 50% of fluorescence in the NAPL was removed, whereas under the same conditions with no SDBS applied, less than 30% was removed. Diverted gas flow through the venting ports installed in the aquifer model induced a horizontally expanded oxidative reaction zone during ozone sparging. This study demonstrates enhanced gas sparging performance for the removal of contaminants from the aquifer with limited usage of additives applied specifically to the source zone.


Subject(s)
Groundwater , Ozone , Water Pollutants, Chemical , Carboxymethylcellulose Sodium , Surface-Active Agents , Volatilization , Water Pollutants, Chemical/analysis
3.
Water Res ; 186: 116332, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32871289

ABSTRACT

Attenuation processes of chlorinated ethenes in complex near-stream systems result in site-specific outcomes of great importance for risk assessment of contaminated sites. Additional interdisciplinary and comprehensive field research is required to enhance process understanding in these systems. In this study, several methods were combined in a multi-scale interdisciplinary in-situ approach to assess and quantify the near-stream attenuation of a chlorinated ethene plume, mainly consisting of cis-dichloroethene (cis-DCE) and vinyl chloride (VC), discharging to a lowland stream (Grindsted stream, Denmark) over a monitoring period of seven years. The approach included: hydrogeological characterisation, reach scale contaminant mass balance analysis, quantification of contaminant mass discharge, streambed fluxes of chlorinated ethenes quantified using Sediment Bed Passive Flux Meters (SBPFMs), assessment of redox conditions, temporal assessment of contaminant concentrations, microbial analysis, and compound-specific isotope analysis (CSIA). This study site exhibits a special attenuation behaviour not commonly encountered in field studies: the conversion from an initially limited degradation case (2012-16), despite seemingly optimal conditions, to one presenting notable levels of degradation (2019). Hence, this study site provides a new piece to the puzzle, as sites with different attenuation behaviours are required in order to acquire the full picture of the role groundwater-surface water interfaces have in risk mitigation. In spite of the increased degradation in the near-stream plume core, the contaminant attenuation was still incomplete in the discharging plume. A conceptualization of flow, transport and processes clarified that hydrogeology was the main control on the natural attenuation, as short residence times of 0.5-37 days restricted the time in which dechlorination could occur. This study reveals the importance of: taking an integrated approach to understand the influence of all attenuation processes in groundwater - surface water interactions; considering the scale and domain of interest when determining the main processes; and monitoring sufficiently both spatially and temporally to cover the transient conditions.


Subject(s)
Groundwater , Water Pollutants, Chemical , Biodegradation, Environmental , Environmental Monitoring , Ethylenes , Microbial Interactions , Rivers , Water Pollutants, Chemical/analysis
4.
Environ Sci Technol ; 54(19): 12550-12559, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32865409

ABSTRACT

Large volumes of per- and polyfluoroalkyl substances (PFAS)-contaminated wastewaters, such as municipal solid waste landfill leachates, pose a challenge for PFAS treatment technologies in practice today. In this study, the surfactant properties of PFAS were exploited to concentrate the compounds in foam produced via the bubble aeration of landfill leachate. The effectiveness of the foaming technique for concentrating PFAS varied by compound, with a mean removal percentage (the percent difference between PFAS in leachate before and after foam removal) of 69% and a median removal percentage of 92% among the 10 replicate foaming experiments. This technique appears to be similarly effective at sequestering sulfonates and carboxylate PFAS compounds and is less effective at concentrating the smallest and largest PFAS molecules. The results of this study suggest that for the pretreatment or preconcentration of landfill leachates, foaming to sequester PFAS may provide a practical approach that could be strategically coupled to high-energy PFAS-destructive treatment technologies. The process described herein is simple and could feasibly be applied at a relatively low cost at most landfills, where leachate aeration is already commonplace.


Subject(s)
Fluorocarbons , Refuse Disposal , Water Pollutants, Chemical , Fluorocarbons/analysis , Solid Waste/analysis , Waste Disposal Facilities , Water Pollutants, Chemical/analysis
5.
J Contam Hydrol ; 228: 103563, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31761389

ABSTRACT

Aqueous solutions of micro-nano bubbles (MNBs) containing ozone gas were injected through a NAPL-contaminated glass bead column. The glass column (15 cm × 2.5 cm) was packed with glass beads: the first 12 cm was packed with coarse glass beads while much finer glass beads were used to pack the remaining 3.0 cm of the column. Decane was used as the representative NAPL, to which an oil-soluble fluorescence tracer was added. The fluorescence tracer was considered as a constituent of the NAPL that readily reacts with ozone. Air and ozone-containing oxygen were used to generate MNB solutions, and injected through the column. In addition, H2O2 was introduced to the O3-containing MNB (O3-MNB) solution to investigate the effect of hydroxyl free radicals on the NAPL removal. An ozone gas sparging experiment was also conducted for comparison. After 72 h of O3-MNB application, a significant mass of n-decane (27.6% of the initial mass applied) was removed from the column. H2O2 injection into the column during O3-MNB application was effective in increasing the n-decane mass removal by 22%, compared to the O3-MNB experiment. The rate of NAPL removal during O3-MNB flushing was significant, although slower than ozone sparging. During O3-MNB application, fast decay of fluorescence was observed; whereas, during co-injection of H2O2 and O3-MNB solutions, only a slight change in the fluorescence was observed. This indicates that oxidative degradation of NAPL during H2O2 and O3-MNB injection takes place only at the NAPL-water interface due to the reactivity of hydroxyl free radical, whereas ozone diffusion into NAPL induced the decay of the fluorescence tracer in the bulk NAPL. The removal characteristics during MNB application and ozone gas sparging were investigated based on the analysis of NAPL using mass spectrophotometer. When O3-MNB and H2O2 were co-injected, only n-decane was detected in the NAPL; while when O3-MNB was used for flushing, oxidative products were found in the NAPL. More hydrophilic compounds were found in the NAPL after ozone sparging. This implies different removal mechanisms depending on the kind of oxidation agent, and the state of oxidizing fluid. Based on the findings in this study, the application of O3-MNB could be a feasible option for cleaning up NAPL-contaminated aquifers.


Subject(s)
Groundwater , Ozone , Water Pollutants, Chemical/analysis , Hydrogen Peroxide , Porosity
6.
J Contam Hydrol ; 227: 103516, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31253505

ABSTRACT

This study assessed the long-term effectiveness of bioremediation as a remedial strategy for a chlorinated, ethene dense, non-aqueous phase liquid (DNAPL) source area, consisting of a higher- and a lower-permeability zone at Alameda Point, California. The evaluation was performed over 3.7 years after cessation of active source area bioremediation using passive flux meters (PFMs), push-pull tracer tests, and soil cores. PFMs showed that total chlorinated ethene molar discharge emanating from the source area remained relatively unchanged pre-and post-bioremediation, but molar discharge compositions shifted from trichloroethene (TCE) and cis-1,2-dichloroethene (cis-DCE) to vinyl chloride (VC) and ethene dominated during post-remedial monitoring. First-order rate constants, derived from PFM data at the edge of the source area and describing the complete dechlorination of TCE at 3.7 years following active bioremediation, were approximately 1.05 yr-1, which was over three times lower than the rate 3.6 yr-1 determined using compound stable isotope analysis (CSIA). Soil cores and push-pull tracer test data showed that DNAPL volume estimates were relatively unchanged pre- and post-bioremediation due to the remaining presence of DNAPL in the lower-permeability zone. These data suggest biotransformation processes are continuing in the higher-permeability zone, whereas DNAPL in the lower-permeability zone continues to serve as a significant source of groundwater contamination. The results suggest that it will take many years under current conditions to attain the United States Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCLs) cleanup objectives.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Biodegradation, Environmental , California
7.
J Environ Qual ; 48(3): 709-716, 2019 May.
Article in English | MEDLINE | ID: mdl-31180422

ABSTRACT

This work enhances our understanding of catchment-scale N budgets by demonstrating the modification and application of a simple method for direct in situ measurements of vadose zone nitrate leaching and attenuation. We developed a soil passive flux meter (SPFM) to measure solute leaching based on a modified design of ion-exchange resin columns, and we tested the design in numerical simulations, laboratory experiments, plot-scale field experiments, and a catchment-scale field deployment. Our design minimized flow divergence around the resin column to attain nearly 100% capture of surface applied tracers in plot- and catchment-scale deployments. We found that mixing resin with native soil and extending the column height 10 cm above the resin layer minimized divergence of soil water around the column, resulting in a field-measured convergence factor (χ) of 1.3 that was consistent with numerical simulations. For catchment-scale testing, SPFMs were used at nine sites in three dominant land uses (crop, pasture, and turf) with known N inputs in two deployments, one during the 4-mo wet season and an additional set during the 8-mo dry season, to obtain integral annual measures of soil nitrate fluxes. In situ measured nitrate leaching determined from the SPFMs was positively correlated with known N inputs ( = 0.55, < 0.05) and attenuation averaged 67% (± 24% SD) of inputs across all sites. Although N inputs explain a large portion of the variability, our results emphasize the importance of both inter- and intra-land use variability in landscape-scale N budgets.


Subject(s)
Soil , Water Pollutants, Chemical , Nitrates , Seasons , Water
8.
J Contam Hydrol ; 221: 127-134, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30777404

ABSTRACT

Two important factors that affect groundwater contaminant persistence are the temporal pattern of contaminant source depletion and solute diffusion into and out of aquitards. This study provides a framework to evaluate the relative importance of these effects on contaminant persistence, with emphasis on the importance of thin aquitards. We developed one-dimensional (1D) analytical solutions for forward and back diffusion in a finite domain with a no flux boundary using the method of images and demonstrated their applicability to measured data from three well-controlled laboratory diffusion experiments with exponentially depleting sources. We used both in situ aquitard solute concentrations and aquifer breakthrough curves for sorbing and non-sorbing solutes. The finite-domain no flux boundary solutions showed better agreement with measured data than was available with semi-infinite approaches, with increasing discrepancy for dimensionless relative diffusion length scale beyond a critical threshold value (Zd > 0.7). We also used a mass balance to demonstrate that the temporal pattern of contaminant source depletion controls the duration of solute mass accumulation in the aquitard, as well as the total solute mass release back into the aquifer. Lower rates of source depletion result in a longer period of mass accumulation in the aquitard and later back diffusion initiation time. The amount of solute mass stored in the aquitard increases with longer loading duration, thereby contributing to overall longer contaminant persistence in aquifers. This study entails widespread implications for anthropogenic waste and contamination sites, which are all dependent on efficient and cost-effective contaminant management strategies.


Subject(s)
Groundwater , Water Pollutants, Chemical , Diffusion , Models, Theoretical , Permeability , Solutions
9.
J Contam Hydrol ; 219: 28-39, 2018 12.
Article in English | MEDLINE | ID: mdl-30361116

ABSTRACT

Source strength functions (SSF), defined as contaminant mass discharge or flux-averaged concentration from dense nonaqueous phase liquid (DNAPL) source zones as a function of time, provide a quantitative model of DNAPL source-zone behavior. Such information is useful for calibration of screening-level models to assist with site management decisions. We investigate the use of historic data collected during long-term monitoring (LTM) activities at a site in Rhode Island to predict the SSF based on temporal mass discharge measurements at a fixed location, as well as SSF estimation using mass discharge measurements at a fixed time from three spatially distributed control planes. Mass discharge based on LTM data decreased from ~300 g/day in 1996 to ~70 g/day in 2012 at a control plane downgradient of the suspected DNAPL source zone, and indicates an overall decline of ~80% in 16 years. These measurements were compared to current mass discharge measurements across three spatially distributed control planes. Results indicate that mass discharge increased in the downgradient direction, and was ~6 g/day, ~37 g/day, and ~400 g/day at near, intermediate, and far distances from the suspected source zone, respectively. This behavior was expected given the decreasing trend observed in the LTM data at a fixed location. These two data sets were compared using travel time as a means to plot the data sets on a common axis. The similarity between the two data sets gives greater confidence to the use of this combined data set for site-specific SSF estimation relative to either the sole use of LTM or spatially distributed data sets.


Subject(s)
Water Pollutants, Chemical , Environmental Monitoring , Humans
10.
J Contam Hydrol ; 214: 16-23, 2018 07.
Article in English | MEDLINE | ID: mdl-29805033

ABSTRACT

A novel approach using foam to manage hazardous waste was successfully demonstrated under active site conditions. The purpose of the foam was to divert groundwater flow, that would normally enter the source zone area, to reduce dissolved contaminant release to the aquifer. During the demonstration, foam was pre generated and directly injected surrounding the chlorinated solvent source zone. Despite the constraints related to the industrial activities and non-optimal position of the injection points, the applicability and effectiveness of the approach have been highlighted using multiple metrics. A combination of measurements and modelling allowed definition of the foam extent surrounding each injection point, and this appears to be the critical metric to define the success of the foam injection approach. Information on the transport of chlorinated solvents in groundwater showed a decrease of contaminant flux by a factor of 4.4 downstream of the confined area. The effective permeability reduction was maintained over a period of three months. The successful containment provides evidence for consideration of the use of foam to improve traditional flushing techniques, by increasing the targeting of contaminants by remedial agents.


Subject(s)
Groundwater , Solvents , Water Pollutants, Chemical , Groundwater/chemistry , Halogenation , Solvents/chemistry , Water Pollutants, Chemical/analysis
11.
J Contam Hydrol ; 210: 42-49, 2018 03.
Article in English | MEDLINE | ID: mdl-29502850

ABSTRACT

The effect of groundwater viscosity control on the performance of surfactant-enhanced air sparging (SEAS) was investigated using 1- and 2-dimensional (1-D and 2-D) bench-scale physical models. The viscosity of groundwater was controlled by a thickener, sodium carboxymethylcellulose (SCMC), while an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), was used to control the surface tension of groundwater. When resident DI water was displaced with a SCMC solution (500 mg/L), a SDBS solution (200 mg/L), and a solution with both SCMC (500 mg/L) and SDBS (200 mg/L), the air saturation for sand-packed columns achieved by air sparging increased by 9.5%, 128%, and 154%, respectively, (compared to that of the DI water-saturated column). When the resident water contained SCMC, the minimum air pressure necessary for air sparging processes increased, which is considered to be responsible for the increased air saturation. The extent of the sparging influence zone achieved during the air sparging process using the 2-D model was also affected by viscosity control. Larger sparging influence zones (de-saturated zone due to air injection) were observed for the air sparging processes using the 2-D model initially saturated with high-viscosity solutions, than those without a thickener in the aqueous solution. The enhanced air saturations using SCMC for the 1-D air sparging experiment improved the degradative performance of gaseous oxidation agent (ozone) during air sparging, as measured by the disappearance of fluorescence (fluorescein sodium salt). Based on the experimental evidence generated in this study, the addition of a thickener in the aqueous solution prior to air sparging increased the degree of air saturation and the sparging influence zone, and enhanced the remedial potential of SEAS for contaminated aquifers.


Subject(s)
Air Pressure , Groundwater/chemistry , Models, Theoretical , Ozone/chemistry , Surface-Active Agents/chemistry , Water Pollutants, Chemical/analysis , Benzenesulfonates/chemistry , Carboxymethylcellulose Sodium/chemistry , Environmental Restoration and Remediation , Silicon Dioxide/chemistry , Solutions , Surface Tension , Viscosity
12.
Bioresour Technol ; 245(Pt A): 606-614, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28910648

ABSTRACT

Sorption is one of the most efficient and low cost strategies for volatile organic compound (VOC) removal, but VOC sorption by biochar has seen limited research. In this work, gas phase sorption experiments were conducted to determine the sorption potential and mechanisms of VOCs onto biochar. A total of 15 biochars produced from 5 common feedstocks at 300, 450, and 600°C were evaluated as sorbents. Three common VOCs (acetone, cyclohexane, and toluene) were chosen as sorbates. The results showed that all the tested biochars had VOC sorption capacity in the range of 5.58-91.2mgg-1. The sorption capacities were mainly influenced by both the surface area of biochar and its noncarbonized organic matter content. The vapor sorption process was exothermic, and the removal of VOCs by the biochars decreased with increasing feedstock temperature. Both the physical adsorption and partition mechanisms played important roles in controlling the VOC removal by the biochars. Biochar maintained its VOC removal ability after five consecutive sorption-desorption cycles, which indicated good reusability. Findings of this work suggest that biochar is a promising alternative sorbent for gaseous VOC removal.


Subject(s)
Charcoal , Volatile Organic Compounds , Adsorption
13.
J Contam Hydrol ; 203: 9-17, 2017 08.
Article in English | MEDLINE | ID: mdl-28595989

ABSTRACT

Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497kg) and 95% (205kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1=368.3µg L-1, Y2=230.4µg L-1) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be $341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both agriculture and public interests.


Subject(s)
Groundwater , Phosphorus , Agriculture , Farms , Florida , Phosphorus/analysis , Soil/chemistry , Water Movements , Water Pollutants, Chemical/analysis
14.
J Contam Hydrol ; 202: 47-58, 2017 07.
Article in English | MEDLINE | ID: mdl-28554827

ABSTRACT

Understanding the effects of back diffusion of groundwater contaminants from low-permeability zones to aquifers is critical to making site management decisions related to remedial actions. Here, we combine aquifer and aquitard data to develop recommended site characterization strategies using a three-stage classification of plume life cycle based on the solute origins: aquifer source zone dissolution, source zone dissolution combined with back diffusion from an aquitard, and only back diffusion. We use measured aquitard concentration profile data from three field sites to identify signature shapes that are characteristic of these three stages. We find good fits to the measured data with analytical solutions that include the effects of advection and forward and back diffusion through low-permeability zones, and linearly and exponentially decreasing flux resulting from source dissolution in the aquifer. Aquifer contaminant time series data at monitoring wells from a mature site were well described using analytical solutions representing the combined case of source zone and back diffusion, while data from a site where the source had been isolated were well described solely by back diffusion. The modeling approach presented in this study is designed to enable site managers to implement appropriate remediation technologies at a proper timing for high- and low-permeability zones, considering estimated plume life cycle.


Subject(s)
Groundwater/chemistry , Hydrology/methods , Water Pollutants, Chemical/analysis , Connecticut , Delaware , Diffusion , Environmental Monitoring/methods , Florida , Groundwater/analysis , Interrupted Time Series Analysis , Permeability , Water Pollutants, Chemical/chemistry
15.
J Contam Hydrol ; 193: 54-62, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27636989

ABSTRACT

Solute diffusive exchange between low-permeability aquitards and high-permeability aquifers acts as a significant mediator of long-term contaminant fate. Aquifer contaminants diffuse into aquitards, but as contaminant sources are depleted, aquifer concentrations decline, triggering back diffusion from aquitards. The dynamics of the contaminant source depletion, or the source strength function, controls the timing of the transition of aquitards from sinks to sources. Here, we experimentally evaluate three archetypical transient source depletion models (step-change, linear, and exponential), and we use novel analytical solutions to accurately account for dynamic aquitard-aquifer diffusive transfer. Laboratory diffusion experiments were conducted using a well-controlled flow chamber to assess solute exchange between sand aquifer and kaolinite aquitard layers. Solute concentration profiles in the aquitard were measured in situ using electrical conductivity. Back diffusion was shown to begin earlier and produce larger mass flux for rapidly depleting sources. The analytical models showed very good correspondence with measured aquifer breakthrough curves and aquitard concentration profiles. The modeling approach links source dissolution and back diffusion, enabling assessment of human exposure risk and calculation of the back diffusion initiation time, as well as the resulting plume persistence.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Water Movements , Water Pollutants, Chemical/chemistry , Water Pollution, Chemical/analysis , Diffusion , Kaolin/chemistry , Models, Chemical , Permeability , Solutions , Water Pollutants, Chemical/analysis
16.
Sci Total Environ ; 551-552: 238-45, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26878636

ABSTRACT

While aquifer storage and recovery (ASR) is becoming widely accepted as a way to address water supply shortages, there are concerns that it may lead to release of harmful trace elements such as arsenic (As). Thus, mechanisms of As release from limestone during ASR operations were investigated using 110-day laboratory incubations of core material collected from the Floridan Aquifer, with treatment additions of labile or refractory dissolved organic matter (DOM) or microbes. During the first experimental phase, core materials were equilibrated with native groundwater lacking in DO to simulate initial non-perturbed anaerobic aquifer conditions. Then, ASR was simulated by replacing the native groundwater in the incubations vessels with DO-rich ASR source water, with DOM or microbes added to some treatments. Finally, the vessels were opened to the atmosphere to mimic oxidizing conditions during later stages of ASR. Arsenic was released from aquifer materials, mainly during transitional periods at the beginning of each incubation stage. Most As released was during the initial anaerobic experimental phase via reductive dissolution of Fe oxides in the core materials, some or all of which may have formed during the core storage or sample preparation period. Oxidation of As-bearing Fe sulfides released smaller amounts of As during the start of later aerobic experimental phases. Additions of labile DOM fueled microbially-mediated reactions that mobilized As, while the addition of refractory DOM did not, probably due to mineral sorption of DOM that made it unavailable for microbial utilization or metal chelation. The results suggest that oscillations of groundwater redox conditions, such as might be expected to occur during an ASR operation, are the underlying cause of enhanced As release in these systems. Further, ASR operations using DOM-rich surface waters may not necessarily lead to additional As releases.


Subject(s)
Arsenic/analysis , Environmental Monitoring , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Florida , Water Purification , Water Supply
17.
Environ Sci Technol ; 50(1): 207-13, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26619000

ABSTRACT

Partitioning tracer testing was performed in discrete intervals within a fractured bedrock tetrachloroethene (PCE) dense nonaqueous-phase liquid (DNAPL) source area to assess the fracture flow field and DNAPL architecture. Results confirmed that the partitioning tracer testing was able to identify and quantify low levels of residual DNAPL along flow paths in hydraulically conductive fractures. DNAPL fracture saturations (Sn) ranged from undetectable to 0.007 (DNAPL volume/fracture volume). A comparison of the fracture flow field to the DNAPL distribution indicated that the highest value of Sn was observed in the least transmissive fracture (or fracture zone). Application of a simple ambient dissolution model showed that the DNAPL present in this low transmissivity zone would persist longer than the DNAPL present in more transmissive fractures and would persist for 200 years (in the absence of any degradation reactions). Assessment of PCE mass distribution between the rock matrix and fractures showed that, due to the presence of DNAPL, the rock matrix accounted for less than 10% of the total PCE mass. The evaluation of PCE concentration profiles in the rock matrix and the estimated diffusional flux from the rock matrix suggest that the elevated PCE groundwater concentrations observed in the fractures likely are due to the presence of the residual DNAPL sources and that removal of the residual DNAPL sources within the fractures would result in a significant decrease in dissolved PCE concentrations in the source area.


Subject(s)
Geological Phenomena , Groundwater/chemistry , Models, Theoretical , Tetrachloroethylene/chemistry , Water Pollutants, Chemical/chemistry , Diffusion , Ecology
18.
J Contam Hydrol ; 184: 25-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26697745

ABSTRACT

The effects of controlled air flow paths during air sparging on the removal of volatile organic compounds were examined in this study using a two-dimensional bench-scale physical model. An aqueous solution of sodium carboxymethylcellulose (SCMC), which is a thickener, was used to increase the resistance of water to displacement by injected air in a region around the targeted zone. At the same time, an aqueous solution of sodium dodecylbenzene sulfonate (SDBS), which is a surfactant, was used to reduce the air entry pressure to enhance the air flow through the targeted region. Trichloroethene (TCE), dissolved in water, was used to represent an aqueous phase volatile organic compound (VOC). A binary mixture of perchloroethene (PCE) and n-hexane was also used as a nonaqeous phase liquid (NAPL). Controlled air flow through the source zone, achieved by emplacing a high viscosity aqueous solution into a region surrounding the TCE-impacted zone, resulted in increased TCE removal from 23.0% (control) to 38.2% during a 2.5h period. When the air flow was focused on the targeted source zone of aqueous phase TCE (by decreasing the surface tension within the source zone and its vicinity by 28 dyn/cm, no SCMC applied), the mass removal of TCE was enhanced to 41.3% during the same time period. With SCMC and SDBS applied simultaneously around and beneath a NAPL source zone, respectively, the NAPL components were found to be removed more effectively over a period of 8.2h than the sparging experiment with no additives applied; 84.6% of PCE and 94.0% of n-hexane were removed for the controlled air flow path experiments (with both SCMC and SDBS applied) compared to 52.7% (PCE) and 74.0% (n-hexane) removal for the control experiment (no additives applied). Based on the experimental observations made in this study, applying a viscous aqueous solution around the source zone and a surfactant solution in and near the source zone, the air flow was focused through the targeted contaminant zone, enhancing the removal of VOCs from either an aqueous phase or a NAPL phase.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Groundwater/chemistry , Hexanes/chemistry , Surface-Active Agents/chemistry , Trichloroethylene/chemistry , Volatile Organic Compounds/chemistry , Water Pollutants, Chemical/chemistry , Environmental Restoration and Remediation/methods , Ethane/analogs & derivatives , Ethane/chemistry , Hydrocarbons, Chlorinated/chemistry , Models, Theoretical , Surface Tension
19.
J Contam Hydrol ; 177-178: 167-82, 2015.
Article in English | MEDLINE | ID: mdl-25965419

ABSTRACT

The uncertainty of mass discharge measurements associated with point-scale measurement techniques was investigated by deriving analytical solutions for the mass discharge coefficient of variation for two simplified, conceptual models. In the first case, a depth-averaged domain was assumed, consisting of one-dimensional groundwater flow perpendicular to a one-dimensional control plane of uniformly spaced sampling points. The contaminant flux along the control plane was assumed to be normally distributed. The second case consisted of one-dimensional groundwater flow perpendicular to a two-dimensional control plane of uniformly spaced sampling points. The contaminant flux in this case was assumed to be distributed according to a bivariate normal distribution. The center point for the flux distributions in both cases was allowed to vary in the domain of the control plane as a uniform random variable. Simplified equations for the uncertainty were investigated to facilitate screening-level evaluations of uncertainty as a function of sampling network design. Results were used to express uncertainty as a function of the length of the control plane and number of wells, or alternatively as a function of the sample spacing. Uncertainty was also expressed as a function of a new dimensionless parameter, Ω, defined as the ratio of the maximum local flux to the product of mass discharge and sample density. Expressing uncertainty as a function of Ω provided a convenient means to demonstrate the relationship between uncertainty, the magnitude of a local hot spot, magnitude of mass discharge, distribution of the contaminant across the control plane, and the sampling density.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Water Pollution/analysis , Groundwater , Uncertainty , Water Pollutants, Chemical/analysis , Water Wells
20.
J Contam Hydrol ; 172: 1-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25462638

ABSTRACT

Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating.


Subject(s)
Air Movements , Environmental Restoration and Remediation/methods , Groundwater/analysis , Water Pollutants, Chemical/chemistry , Water Pollution, Chemical/prevention & control , Surface Tension , Surface-Active Agents/chemistry , Viscosity , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL