Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Metabolites ; 13(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37755265

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that plays an important role in gastrointestinal barrier function, tumorigenesis, and is an emerging drug target. The resident microbiota is capable of metabolizing tryptophan to metabolites that are AHR ligands (e.g., indole-3-acetate). Recently, a novel set of mutagenic tryptophan metabolites named indolimines have been identified that are produced by M. morganii in the gastrointestinal tract. Here, we determined that indolimine-200, -214, and -248 are direct AHR ligands that can induce Cyp1a1 transcription and subsequent CYP1A1 enzymatic activity capable of metabolizing the carcinogen benzo(a)pyrene in microsomal assays. In addition, indolimines enhance IL6 expression in a colonic tumor cell line in combination with cytokine treatment. The concentration of indolimine-248 that induces AHR transcriptional activity failed to increase DNA damage. These observations reveal an additional aspect of how indolimines may alter colonic tumorigenesis beyond mutagenic activity.

2.
Int J Tryptophan Res ; 16: 11786469231182508, 2023.
Article in English | MEDLINE | ID: mdl-37434789

ABSTRACT

The aryl hydrocarbon receptor (AHR) exerts major roles in xenobiotic metabolism, and in immune and barrier tissue homeostasis. How AHR activity is regulated by the availability of endogenous ligands is poorly understood. Potent AHR ligands have been shown to exhibit a negative feedback loop through induction of CYP1A1, leading to metabolism of the ligand. Our recent study identified and quantified 6 tryptophan metabolites (eg, indole-3-propionic acid, and indole-3-acetic acid) in mouse and human serum, generated by the host and gut microbiome, that are present in sufficient concentrations to individually activate the AHR. Here, these metabolites are not significantly metabolized by CYP1A1/1B1 in an in vitro metabolism assay. In contrast, CYP1A1/1B metabolizes the potent endogenous AHR ligand 6-formylindolo[3,2b]carbazole. Furthermore, molecular modeling of these 6 AHR activating tryptophan metabolites within the active site of CYP1A1/1B1 reveal metabolically unfavorable docking profiles with regard to orientation with the catalytic heme center. In contrast, docking studies confirmed that 6-formylindolo[3,2b]carbazole would be a potent substrate. The lack of CYP1A1 expression in mice fails to influence serum levels of the tryptophan metabolites examined. In addition, marked induction of CYP1A1 by PCB126 exposure in mice failed to alter the serum concentrations of these tryptophan metabolites. These results suggest that certain circulating tryptophan metabolites are not susceptible to an AHR negative feedback loop and are likely important factors that mediate constitutive but low level systemic human AHR activity.

3.
Int J Tryptophan Res ; 16: 11786469231182510, 2023.
Article in English | MEDLINE | ID: mdl-37441265

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that plays an integral role in homeostatic maintenance by regulating cellular functions such as cellular differentiation, metabolism, barrier function, and immune response. An important but poorly understood class of AHR activators are compounds derived from host and bacterial metabolism of tryptophan. The commensal bacteria of the gut microbiome are major producers of tryptophan metabolites known to activate the AHR, while the host also produces AHR activators through tryptophan metabolism. We used targeted mass spectrometry-based metabolite profiling to determine the presence and metabolic source of these metabolites in the sera of conventional mice, germ-free mice, and humans. Surprisingly, sera concentrations of many tryptophan metabolites are comparable between germ-free and conventional mice. Therefore, many major AHR-activating tryptophan metabolites in mouse sera are produced by the host, despite their presence in feces and mouse cecal contents. Here we present an investigation of AHR activation using a complex mixture of tryptophan metabolites to examine the biological relevance of circulating tryptophan metabolites. AHR activation is rarely studied in the context of a mixture at relevant concentrations, as we present here. The AHR activation potentials of individual and pooled metabolites were explored using cell-based assays, while ligand binding competition assays and ligand docking simulations were used to assess the detected metabolites as AHR agonists. The physiological and biomedical relevance of the identified metabolites was investigated in the context of a cell-based model for rheumatoid arthritis. We present data that reframe AHR biology to include the presence of a mixture of ubiquitous tryptophan metabolites, improving our understanding of homeostatic AHR activity and models of AHR-linked diseases.

4.
FASEB J ; 37(7): e23010, 2023 07.
Article in English | MEDLINE | ID: mdl-37272852

ABSTRACT

The aryl hydrocarbon receptor (AHR) mediates intestinal barrier homeostasis. Many AHR ligands are also CYP1A1/1B1 substrates, which can result in rapid clearance within the intestinal tract, limiting systemic exposure and subsequent AHR activation. This led us to the hypothesis that there are dietary substrates of CYP1A1/1B1 that functionally increase the half-life of potent AHR ligands. We examined the potential of urolithin A (UroA), a gut bacterial metabolite of ellagitannins, as a CYP1A1/1B1 substrate to enhance AHR activity in vivo. UroA is a competitive substrate for CYP1A1/1B1 in an in vitro competition assay. A broccoli-containing diet promotes the gastric formation of the potent hydrophobic AHR ligand and CYP1A1/1B1 substrate, 5,11-dihydroindolo[3,2-b]carbazole (ICZ). In mice, dietary exposure to UroA in a 10% broccoli diet led to a coordinated increase in duodenal, cardiac, and pulmonary AHR activity, but no increase in activity in the liver. Thus, CYP1A1 dietary competitive substrates can lead to enhanced systemic AHR ligand distribution from the gut, likely through the lymphatic system, increasing AHR activation in key barrier tissues. Finally, this report will lead to a reassessment of the dynamics of distribution of other hydrophobic chemicals present in the diet.


Subject(s)
Cytochrome P-450 CYP1A1 , Gastrointestinal Tract , Lung , Receptors, Aryl Hydrocarbon , Animals , Mice , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Ligands , Liver/metabolism , Lung/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Diet , Gastrointestinal Tract/metabolism
5.
bioRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36865156

ABSTRACT

The aryl hydrocarbon receptor (AHR) mediates intestinal barrier homeostasis. Many AHR ligands are also CYP1A1/1B1 substrates, which can result in the rapid clearance within the intestinal tract, limiting AHR activation. This led us to the hypothesis that there are dietary substrates of CYP1A1/1B1 that increase the half-life of potent AHR ligands. We examined the potential of urolithin A (UroA) as a CYP1A1/1B1 substrate to enhance AHR activity in vivo. UroA is a competitive substrate for CYP1A1/1B1 in an in vitro competition assay. A broccoli-containing diet promotes the gastric formation of the potent hydrophobic AHR ligand and CYP1A1/1B1 substrate, 5,11-dihydroindolo[3,2-b]carbazole (ICZ). Dietary exposure to UroA in a broccoli diet led to a coordinated increase in duodenal, cardiac, and pulmonary AHR activity, but no increase in activity in liver. Thus, CYP1A1 dietary competitive substrates can lead to intestinal escape, likely through the lymphatic system, increasing AHR activation in key barrier tissues.

6.
bioRxiv ; 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36747842

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that plays an integral role in homeostatic maintenance by regulating cellular functions such as cellular differentiation, metabolism, barrier function, and immune response. An important but poorly understood class of AHR activators are compounds derived from host and bacterial metabolism of tryptophan. The commensal bacteria of the gut microbiome are major producers of tryptophan metabolites known to activate the AHR, while the host also produces AHR activators through tryptophan metabolism. We used targeted mass spectrometry-based metabolite profiling to determine the presence and metabolic source of these metabolites in the sera of conventional mice, germ-free mice, and humans. Surprisingly, sera concentrations of many tryptophan metabolites are comparable between germ-free and conventional mice. Therefore, many major AHR-activating tryptophan metabolites in mouse sera are produced by the host, despite their presence in feces and mouse cecal contents. AHR activation is rarely studied in the context of a mixture at relevant concentrations, as we present here. The AHR activation potentials of individual and pooled metabolites were explored using cell-based assays, while ligand binding competition assays and ligand docking simulations were used to assess the detected metabolites as AHR agonists. The physiological and biomedical relevance of the identified metabolites was investigated in the context of cell-based models for cancer and rheumatoid arthritis. We present data here that reframe AHR biology to include the presence of ubiquitous tryptophan metabolites, improving our understanding of homeostatic AHR activity and models of AHR-linked diseases.

7.
Cells ; 11(19)2022 09 20.
Article in English | MEDLINE | ID: mdl-36230892

ABSTRACT

Cytochrome P450 (CYP) 1B1 belongs to the superfamily of heme-containing monooxygenases. Unlike other CYP enzymes, which are highly expressed in the liver, CYP1B1 is predominantly found in extrahepatic tissues, such as the brain, and ocular tissues including retina and trabecular meshwork. CYP1B1 metabolizes exogenous chemicals such as polycyclic aromatic hydrocarbons. CYP1B1 also metabolizes endogenous bioactive compounds including estradiol and arachidonic acid. These metabolites impact various cellular and physiological processes during development and pathological processes. We previously showed that CYP1B1 deficiency mitigates ischemia-mediated retinal neovascularization and drives the trabecular meshwork dysgenesis through increased levels of oxidative stress. However, the underlying mechanisms responsible for CYP1B1-deficiency-mediated increased oxidative stress remain largely unresolved. Iron is an essential element and utilized as a cofactor in a variety of enzymes. However, excess iron promotes the production of hydroxyl radicals, lipid peroxidation, increased oxidative stress, and cell damage. The retinal endothelium is recognized as a major component of the blood-retinal barrier, which controls ocular iron levels through the modulation of proteins involved in iron regulation present in retinal endothelial cells, as well as other ocular cell types including trabecular meshwork cells. We previously showed increased levels of reactive oxygen species and lipid peroxidation in the absence of CYP1B1, and in the retinal vasculature and trabecular meshwork, which was reversed by administration of antioxidant N-acetylcysteine. Here, we review the important role CYP1B1 expression and activity play in maintaining retinal redox homeostasis through the modulation of iron levels by retinal endothelial cells. The relationship between CYP1B1 expression and activity and iron levels has not been previously delineated. We review the potential significance of CYP1B1 expression, estrogen metabolism, and hepcidin-ferroportin regulatory axis in the local regulation of ocular iron levels.


Subject(s)
Hepcidins , Polycyclic Aromatic Hydrocarbons , Acetylcysteine/metabolism , Antioxidants/metabolism , Arachidonic Acid , Cytochrome P-450 Enzyme System/metabolism , Endothelial Cells/metabolism , Estradiol , Estrogens , Heme/metabolism , Hepcidins/metabolism , Homeostasis , Iron , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Trabecular Meshwork/metabolism
9.
Sci Rep ; 11(1): 4722, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633318

ABSTRACT

CYP3A5 is the primary CYP3A subfamily enzyme expressed in the human kidney and its aberrant expression may contribute to a broad spectrum of renal disorders. Pharmacogenetic studies have reported inconsistent linkages between CYP3A5 expression and hypertension, however, most investigators have considered CYP3A5*1 as active and CYP3A5*3 as an inactive allele. Observations of gender specific differences in CYP3A5*3/*3 protein expression suggest additional complexity in gene regulation that may underpin an environmentally responsive role for CYP3A5 in renal function. Reconciliation of the molecular mechanism driving conditional restoration of functional CYP3A5*3 expression from alternatively spliced transcripts, and validation of a morpholino-based approach for selectively suppressing renal CYP3A5 expression, is the focus of this work. Morpholinos targeting a cryptic splice acceptor created by the CYP3A5*3 mutation in intron 3 rescued functional CYP3A5 expression in vitro, and salt-sensitive cellular mechanisms regulating splicing and conditional expression of CYP3A5*3 transcripts are reported. The potential for a G-quadruplex (G4) in intron 3 to mediate restored splicing to exon 4 in CYP3A5*3 transcripts was also investigated. Finally, a proximal tubule microphysiological system (PT-MPS) was used to evaluate the safety profile of morpholinos in proximal tubule epithelial cells, highlighting their potential as a therapeutic platform for the treatment of renal disease.


Subject(s)
Cytochrome P-450 CYP3A/genetics , Drug Discovery , Kidney Diseases/drug therapy , Oligonucleotides, Antisense/pharmacology , Cell Line , G-Quadruplexes/drug effects , HEK293 Cells , Humans , Kidney Diseases/genetics , Morpholinos/genetics , Morpholinos/pharmacology , Mutation/drug effects , Oligonucleotides, Antisense/genetics
10.
Drug Metab Dispos ; 48(4): 272-287, 2020 04.
Article in English | MEDLINE | ID: mdl-31980501

ABSTRACT

The human genome encodes 48 nuclear receptor (NR) genes, whose translated products transform chemical signals from endo-xenobiotics into pleotropic RNA transcriptional profiles that refine drug metabolism. This review describes the remarkable diversification of the 48 human NR genes, which are potentially processed into over 1000 distinct mRNA transcripts by alternative splicing (AS). The average human NR expresses ∼21 transcripts per gene and is associated with ∼7000 single nucleotide polymorphisms (SNPs). However, the rate of SNP accumulation does not appear to drive the AS process, highlighting the resilience of NR genes to mutation. Here we summarize the altered tissue distribution/function of well characterized NR splice variants associated with human disease. We also describe a cassette exon visualization pictograph methodology for illustrating the location of modular, cassette exons in genes, which can be skipped in-frame, to facilitate the study of their functional relevance to both drug metabolism and NR evolution. We find cassette exons associated with all of the functional domains of NR genes including the DNA and ligand binding domains. The matrix of inclusion or exclusion for functional domain-encoding cassette exons is extensive and capable of significant alterations in cellular phenotypes that modulate endo-xenobiotic metabolism. Exon inclusion options are differentially distributed across NR subfamilies, suggesting group-specific conservation of resilient functionalities. A deeper understanding of this transcriptional plasticity expands our understanding of how chemical signals are refined and mediated by NR genes. This expanded view of the NR transcriptome informs new models of chemical toxicity, disease diagnostics, and precision-based approaches to personalized medicine. SIGNIFICANCE STATEMENT: This review explores the impact of alternative splicing (AS) on the human nuclear receptor (NR) superfamily and highlights the dramatic expansion of more than 1000 potential transcript variants from 48 individual genes. Xenobiotics are increasingly recognized for their ability to perturb gene splicing events, and here we explore the differential sensitivity of NR genes to AS and chemical exposure. Using the cassette exon visualization pictograph methodology, we have documented the conservation of splice-sensitive, modular, cassette exon domains among the 48 human NR genes, and we discuss how their differential expression profiles may augment cellular resilience to oxidative stress and fine-tune adaptive, metabolic responses to endo-xenobiotic exposure.


Subject(s)
Alternative Splicing , Receptors, Cytoplasmic and Nuclear/genetics , Transcriptome/genetics , Xenobiotics/metabolism , Exons/genetics , Humans , Oxidative Stress/drug effects , Oxidative Stress/genetics , Polymorphism, Single Nucleotide , Precision Medicine/methods , RNA, Messenger/metabolism , Xenobiotics/pharmacology
11.
Toxicol Appl Pharmacol ; 364: 55-67, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30552932

ABSTRACT

Alternative splicing modulates gene function by creating splice variants with alternate functions or non-coding RNA activity. Naturally occurring variants of nuclear receptor (NR) genes with dominant negative or gain-of-function phenotypes have been documented, but their cellular roles, regulation, and responsiveness to environmental stress or disease remain unevaluated. Informed by observations that class I androgen and estrogen receptor variants display ligand-independent signaling in human cancer tissues, we questioned whether the function of class II NRs, like the vitamin D receptor (VDR), would also respond to alternative splicing regulation. Artificial VDR constructs lacking exon 3 (Dex3-VDR), encoding part of the DNA binding domain (DBD), and exon 8 (Dex8-VDR), encoding part of the ligand binding domain (LBD), were transiently transfected into DU-145 cells and stably-integrated into Caco-2 cells to study their effect on gene expression and cell viability. Changes in VDR promoter signaling were monitored by the expression of target genes (e.g. CYP24A1, CYP3A4 and CYP3A5). Ligand-independent VDR signaling was observed in variants lacking exon 8, and a significant loss of gene suppressor function was documented for variants lacking exon 3. The gain-of-function behavior of the Dex8-VDR variant was recapitulated in vitro using antisense oligonucleotides (ASO) that induce the skipping of exon 8 in wild-type VDR. ASO targeting the splice acceptor site of exon 8 significantly stimulated ligand-independent VDR reporter activity and the induction of CYP24A1 above controls. These results demonstrate how alternative splicing can re-program NR gene function, highlighting novel mechanisms of toxicity and new opportunities for the use of splice-switching oligonucleotides (SSO) in precision medicine.


Subject(s)
Alternative Splicing , Colonic Neoplasms/genetics , Cytochrome P-450 Enzyme System/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Receptors, Calcitriol/genetics , Caco-2 Cells , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/therapy , Cytochrome P-450 CYP3A/biosynthesis , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 Enzyme System/biosynthesis , Enzyme Induction , Exons , Genetic Therapy/methods , Humans , Ligands , Male , Oligonucleotides, Antisense/pharmacology , Promoter Regions, Genetic , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Receptors, Calcitriol/metabolism , Vitamin D3 24-Hydroxylase/biosynthesis , Vitamin D3 24-Hydroxylase/genetics
12.
Oncotarget ; 9(55): 30568-30586, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-30093970

ABSTRACT

Ewing's sarcoma treatment failures are associated with high mortality indicating a need for new therapeutic approaches. We used a k-mer counting approach to identify cancer-specific mRNA transcripts in 3 Ewing's Family Tumor (EFT) cell lines not found in the normal human transcriptome. Phosphorodiamidate morpholino oligomers targeting six EFT-specific transcripts were evaluated for cytotoxicity in TC-32 and CHLA-10 EFT lines and in HEK293 renal epithelial control cells. Average morpholino efficacy (EC50) was 0.66 ± 0.13 in TC-32, 0.25 ± 0.14 in CHLA-10 and 3.07 ± 5.02 µM in HEK293 control cells (ANOVA p < 0.01). Synergy was observed for a cocktail of 12 morpholinos at low dose (0.3 µM) in TC-32 cells, but not in CHLA-10 cells. Paired synergy was also observed in both EFT cell lines when the PHGDH pre-mRNA transcript was targeted in combination with XAGE1B or CYP4F22 transcripts. Antagonism was observed when CCND1 was targeted with XAGE1B or CYP4F22, or when IGFBP-2 was targeted with CCND1 or RBM11. This transcriptome profiling approach is highly effective for cancer drug discovery, as it identified new EWS-specific target genes (e.g. CYP4F22, RBM11 and IGBP-2), and predicted effective antisense agents (EC50 < 1 µM) that demonstrate both synergy and antagonism in combination therapy.

13.
Drug Metab Dispos ; 45(4): 375-389, 2017 04.
Article in English | MEDLINE | ID: mdl-28188297

ABSTRACT

The human genome encodes 57 cytochrome P450 genes, whose enzyme products metabolize hundreds of drugs, thousands of xenobiotics, and unknown numbers of endogenous compounds, including steroids, retinoids, and eicosanoids. Indeed, P450 genes are the first line of defense against daily environmental chemical challenges in a manner that parallels the immune system. Several National Institutes of Health databases, including PubMed, AceView, and Ensembl, were queried to establish a comprehensive analysis of the full human P450 transcriptome. This review describes a remarkable diversification of the 57 human P450 genes, which may be alternatively processed into nearly 1000 distinct mRNA transcripts to shape an individual's P450 proteome. Important P450 splice variants from families 1A, 1B, 2C, 2D, 3A, 4F, 19A, and 24A have now been documented, with some displaying alternative subcellular distribution or catalytic function directly linked to a disease pathology. The expansion of P450 transcript diversity involves tissue-specific splicing factors, transformation-sensitive alternate splicing, trans-splicing between gene transcripts, single-nucleotide polymorphisms, and epigenetic regulation of alternate splicing. Homeostatic regulation of variant P450 expression is influenced also by nuclear receptor signaling, suppression of nonsense-mediated decay or premature termination codons, mitochondrial dysfunction, or host infection. This review focuses on emergent aspects of the adaptive gene-splicing process, which when viewed through the lens of P450-nuclear receptor gene interactions, resembles a primitive immune-like system that can rapidly monitor, respond, and diversify to acclimate to fluctuations in endo-xenobiotic exposure. Insights gained from this review should aid future drug discovery and improve therapeutic management of personalized drug regimens.


Subject(s)
Alternative Splicing , Cytochrome P-450 Enzyme System/genetics , Epigenesis, Genetic , Pharmaceutical Preparations/metabolism , Cytochrome P-450 Enzyme System/metabolism , Drug Discovery/methods , Homeostasis/physiology , Humans , Polymorphism, Single Nucleotide , Precision Medicine/methods , RNA, Messenger/metabolism , Transcriptome
14.
J Cell Biochem ; 115(8): 1392-402, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24535953

ABSTRACT

The potency of 25-hydroxyvitamin D3 (25(OH)D3) is increased by several fold through its metabolism into 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) by cytochrome P450 27B1 (CYP27B1). Thus, the pivotal role of 1α-hydroxylation in the activation of vitamin D compounds is well known. Here, we examined the metabolism of 25-hydroxy-16-ene-23-yne-vitamin D3 (25(OH)-16-ene-23-yne-D3), a synthetic analog of 25(OH)D3 in a cell-free system and demonstrated that 25(OH)-16-ene-23-yne-D3 is neither activated by CYP27B1 nor inactivated by cytochrome P450 24A1 (CYP24A1). These findings were also confirmed in immortalized normal human prostate epithelial cells (PZ-HPV-7) which are known to express both CYP27B1 and CYP24A1, indicating that the structural modifications featured in 25(OH)-16-ene-23-yne-D3 enable the analog to resist the actions of both CYP27B1 and CYP24A1. To provide intelligible structure-function information, we also performed molecular docking analysis between the analog and CYP27B1. Furthermore, 25(OH)-16-ene-23-yne-D3 was found to suppress the growth of PZ-HPV-7 cells with a potency equivalent to 1α,25(OH)2D3. The antiproliferative activity of 25(OH)-16-ene-23-yne-D3 was found to be vitamin D receptor (VDR)-dependent as it failed to inhibit the growth of mammary tumor cells derived from VDR-knockout mice. Furthermore, stable introduction of VDR into VDR-knockout cells restored the growth inhibition by 25(OH)-16-ene-23-yne-D3. Thus, we identified 25-hydroxy-16-ene-23-yne-vitamin D3 as a novel non-1α-hydroxylated vitamin D analog which is equipotent to 1α,25(OH)2D3 in its antiproliferative activity. We now propose that the low potency of the intrinsic VDR-mediated activities of 25(OH)D3 can be augmented to the level of 1α,25(OH)2D3 without its activation through 1α-hydroxylation by CYP27B1, but by simply preventing its inactivation by CYP24A1.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Cholecalciferol/analogs & derivatives , Prostatic Neoplasms/drug therapy , Vitamin D3 24-Hydroxylase/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/chemistry , Animals , Catalysis , Cell Line, Tumor , Cell Proliferation/drug effects , Cholecalciferol/administration & dosage , Cholecalciferol/chemistry , Drug Resistance, Neoplasm/genetics , Humans , Male , Mice , Molecular Docking Simulation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptors, Calcitriol/chemistry , Receptors, Calcitriol/metabolism , Vitamin D3 24-Hydroxylase/chemistry
15.
J Cell Biochem ; 114(10): 2293-305, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23606409

ABSTRACT

3-epi-1α,25-dihydroxyvitamin D3 (3-epi-1α,25(OH)2D3), a natural metabolite of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), exhibits potent vitamin D receptor (VDR)-mediated actions such as inhibition of keratinocyte growth or suppression of parathyroid hormone secretion. These VDR-mediated actions of 3-epi-1α,25(OH)2D3 needed an explanation as 3-epi-1α,25(OH)2D3, unlike 1α,25(OH)2D3, exhibits low affinity towards VDR. Metabolic stability of 3-epi-1α,25(OH)2D3 over 1α,25(OH)2D3 has been hypothesized as a possible explanation. To provide further support for this hypothesis, we now performed comparative metabolism studies between 3-epi-1α,25(OH)2D3 and 1α,25(OH)2D3 using both the technique of isolated rat kidney perfusion and purified rat CYP24A1 in a cell-free reconstituted system. For the first time, these studies resulted in the isolation and identification of 3-epi-calcitroic acid as the final inactive metabolite of 3-epi-1α,25(OH)2D3 produced by rat CYP24A1. Furthermore, under identical experimental conditions, it was noted that the amount of 3-epi-calcitroic acid produced from 3-epi-1α,25(OH)2D3 is threefold less than that of calcitroic acid, the analogous final inactive metabolite produced from 1α,25(OH)2D3 . This key observation finally led us to conclude that the rate of overall side-chain oxidation of 3-epi-1α,25(OH)2D3 by rat CYP24A1 leading to its final inactivation is slower than that of 1α,25(OH)2D3. To elucidate the mechanism responsible for this important finding, we performed a molecular docking analysis using the crystal structure of rat CYP24A1. Docking results suggest that 3-epi-1α,25(OH)2D3, unlike 1α,25(OH)2D3, binds to CYP24A1 in an alternate configuration that destabilizes the formation of the enzyme-substrate complex sufficiently to slow the rate at which 3-epi-1α,25(OH)2D3 is inactivated by CYP24A1 through its metabolism into 3-epi-calcitroic acid.


Subject(s)
Hydroxycholecalciferols/metabolism , Molecular Dynamics Simulation , Steroid Hydroxylases/metabolism , Vitamin D/analogs & derivatives , Animals , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Rats , Vitamin D/metabolism , Vitamin D3 24-Hydroxylase
16.
J Steroid Biochem Mol Biol ; 136: 47-53, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23165146

ABSTRACT

Novel paradigms for CYP24A1 inhibitor development are needed to circumvent existing efficacy and toxicity issues related to human therapeutics in this class. We hypothesize that improved structural knowledge of CYP24A1 in complex with natural substrates, inhibitors and/or its redox partner protein, adrenodoxin (Adx) is required to facilitate the next generation of CYP24A1 inhibitor design. To this end, we have developed truncated expression constructs for both rat CYP24A1 (Δ51) and bovine Adx (Δ108), which allow us to purify a stable and reversible state of the CYP24A1:Adx complex, for use in ongoing X-ray crystallographic studies. Spectral characterization of the reversible complex revealed that Adx binding enhanced the stability of the enzyme-substrate complex, despite lowering the ligand binding affinity of the free enzyme, for 1,25(OH)2D2, over 9-fold. Truncation of CYP24A1's flexible N-terminus (Δ51) improved the enzyme's ability to recruit substrate, without altering Adx's ability to stabilize the ligand-bound form. We also found that several common crystallization detergents, including CHAPS, inhibit ligand binding to the CYP24A1:Adx complex at concentrations well below their reported critical micelle concentration (CMC) values. Ultimately, this research provides a useful platform and framework for the study of conformationally complex, membrane-protein complexes, in the ligand-bound state.


Subject(s)
Adrenodoxin/chemistry , Steroid Hydroxylases/chemistry , Amino Acid Sequence , Animals , Cattle , Humans , Molecular Sequence Data , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/chemistry , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/chemistry , Peptide Fragments/genetics , Rats , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Steroid Hydroxylases/antagonists & inhibitors , Steroid Hydroxylases/genetics , Vitamin D3 24-Hydroxylase
17.
Arch Biochem Biophys ; 509(1): 33-43, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21338573

ABSTRACT

We examined the metabolism of two synthetic analogs of 1α,25-dihydroxyvitamin D3 (1), namely 1α,25-dihydroxy-16-ene-23-yne-vitamin D3 (2) and 1α,25-dihydroxy-16-ene-23-yne-26,27-dimethyl-vitamin D3 (4) using rat cytochrome P450 24A1 (CYP24A1) in a reconstituted system. We noted that 2 is metabolized into a single metabolite identified as C26-hydroxy-2 while 4 is metabolized into two metabolites, identified as C26-hydroxy-4 and C26a-hydroxy-4. The structural modification of adding methyl groups to the side chain of 1 as in 4 is also featured in another analog, 1α,25-dihydroxy-22,24-diene-24,26,27-trihomo-vitamin D3 (6). In a previous study, 6 was shown to be metabolized exactly like 4, however, the enzyme responsible for its metabolism was found to be not CYP24A1. To gain a better insight into the structural determinants for substrate recognition of different analogs, we performed an in silico docking analysis using the crystal structure of rat CYP24A1 that had been solved for the substrate-free open form. Whereas analogs 2 and 4 docked similar to 1, 6 showed altered interactions for both the A-ring and side chain, despite prototypical recognition of the CD-ring. These findings hint that CYP24A1 metabolizes selectively different analogs of 1, based on their ability to generate discrete recognition cues required to close the enzyme and trigger the catalytic mechanism.


Subject(s)
Steroid Hydroxylases/metabolism , Vitamin D/analogs & derivatives , Animals , Gas Chromatography-Mass Spectrometry , Models, Molecular , Protein Binding , Rats , Steroid Hydroxylases/chemistry , Vitamin D/chemistry , Vitamin D/metabolism , Vitamin D3 24-Hydroxylase
18.
J Biol Chem ; 286(7): 5607-13, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21159775

ABSTRACT

Mitochondrial cytochrome P450 11A1 (CYP11A1 or P450 11A1) is the only known enzyme that cleaves the side chain of cholesterol, yielding pregnenolone, the precursor of all steroid hormones. Pregnenolone is formed via three sequential monooxygenation reactions that involve the progressive production of 22R-hydroxycholesterol (22HC) and 20α,22R-dihydroxycholesterol, followed by the cleavage of the C20-C22 bond. Herein, we present the 2.5-Å crystal structure of CYP11A1 in complex with the first reaction intermediate, 22HC. The active site cavity in CYP11A1 represents a long curved tube that extends from the protein surface to the heme group, the site of catalysis. 22HC occupies two-thirds of the cavity with the 22R-hydroxyl group nearest the heme, 2.56 Å from the iron. The space at the entrance to the active site is not taken up by 22HC but filled with ordered water molecules. The network formed by these water molecules allows the "soft" recognition of the 22HC 3ß-hydroxyl. Such a mode of 22HC binding suggests shuttling of the sterol intermediates between the active site entrance and the heme group during the three-step reaction. Translational freedom of 22HC and torsional motion of its aliphatic tail are supported by solution studies. The CYP11A1-22HC co-complex also provides insight into the structural basis of the strict substrate specificity and high catalytic efficiency of the enzyme and highlights conserved structural motifs involved in redox partner interactions by mitochondrial P450s.


Subject(s)
Cholesterol Side-Chain Cleavage Enzyme/chemistry , Hydroxycholesterols/chemistry , Mitochondrial Proteins/chemistry , Amino Acid Motifs , Animals , Catalysis , Catalytic Domain , Cattle , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Crystallography, X-Ray , Hydroxycholesterols/metabolism , Mitochondrial Proteins/metabolism , Structure-Activity Relationship
19.
J Mol Biol ; 396(2): 441-51, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-19961857

ABSTRACT

Cytochrome P450 (CYP) 24A1 catalyzes the side-chain oxidation of the hormonal form of vitamin D. Expression of CYP24A1 is up-regulated to attenuate vitamin D signaling associated with calcium homeostasis and cellular growth processes. The development of therapeutics for disorders linked to vitamin D insufficiency would be greatly facilitated by structural knowledge of CYP24A1. Here, we report the crystal structure of rat CYP24A1 at 2.5 A resolution. The structure exhibits an open cleft leading to the active-site heme prosthetic group on the distal surface that is likely to define the path of substrate access into the active site. The entrance to the cleft is flanked by conserved hydrophobic residues on helices A' and G', suggesting a mode of insertion into the inner mitochondrial membrane. A docking model for 1alpha,25-dihydroxyvitamin D(3) binding in the open form of CYP24A1 that clarifies the structural determinants of secosteroid recognition and validates the predictive power of existing homology models of CYP24A1 is proposed. Analysis of CYP24A1's proximal surface identifies the determinants of adrenodoxin recognition as a constellation of conserved residues from helices K, K'', and L that converge with an adjacent lysine-rich loop for binding the redox protein. Overall, the CYP24A1 structure provides the first template for understanding membrane insertion, substrate binding, and redox partner interaction in mitochondrial P450s.


Subject(s)
Mitochondria/enzymology , Steroid Hydroxylases/chemistry , Vitamin D/metabolism , Amino Acid Sequence , Animals , Binding Sites , Crystallography, X-Ray , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Rats , Secosteroids/metabolism , Sequence Homology, Amino Acid , Steroid Hydroxylases/metabolism , Vitamin D3 24-Hydroxylase
20.
Arch Biochem Biophys ; 460(2): 262-73, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17207766

ABSTRACT

Cytochrome P450C24A1 (CYP24A1), a peripheral inner mitochondrial membrane hemoprotein and candidate oncogene, regulates the side-chain metabolism and biological function of vitamin D and many of its related analog drugs. Rational mutational analysis of rat CYP24A1 based on hybrid (2C5/BM-3) homology modeling and affinity labeling studies clarified the role of key domains (N-terminus, A', A, and F-helices, beta3a strand, and beta5 hairpin) in substrate binding and catalysis. The scope of our study was limited by an inability to purify stable mutant enzyme targeting soluble domains (B', G, and I-helices) and suggested greater conformational flexibility among CYP24A1's membrane-associated domains. The most notable mutants developed by modeling were V391T and I500A, which displayed defective-binding function and profound metabolic defects for 25-hydroxylated vitamin D3 substrates similar to a non-functional F-helix mutant (F249T) that we previously reported. Val-391 (beta3a strand) and Ile-500 (beta5 hairpin) are modeled to interact with Phe-249 (F-helix) in a hydrophobic cluster that directs substrate-binding events through interactions with the vitamin D cis-triene moiety. Prior affinity labeling studies identified an amino-terminal residue (Ser-57) as a putative active-site residue that interacts with the 3beta-OH group of the vitamin D A-ring. Studies with 3-epi and 3-deoxy-1,25(OH)2D3 analogs confirmed interactions between the 3beta-OH group and Ser-57 effect substrate recognition and trafficking while establishing that the trans conformation of A-ring hydroxyl groups (1alpha and 3beta) is obligate for high-affinity binding to rat CYP24A1. Our work suggests that CYP24A1's amphipathic nature allows for monotopic membrane insertion, whereby a pw2d-like substrate access channel is formed to shuttle secosteroid substrate from the membrane to the active-site. We hypothesize that CYP24A1 has evolved a unique amino-terminal membrane-binding motif that contributes to substrate specificity and docking through coordinated interactions with the vitamin D A-ring.


Subject(s)
Amino Acid Substitution , Membranes, Artificial , Models, Molecular , Mutation, Missense , Steroid Hydroxylases/metabolism , Vitamin D/metabolism , Amino Acid Motifs/genetics , Animals , Binding Sites/genetics , Biological Transport, Active/genetics , Mutagenesis, Site-Directed , Protein Binding/genetics , Rats , Steroid Hydroxylases/chemistry , Steroid Hydroxylases/genetics , Structural Homology, Protein , Structure-Activity Relationship , Substrate Specificity/genetics , Vitamin D3 24-Hydroxylase
SELECTION OF CITATIONS
SEARCH DETAIL
...