Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 29(19): 3958-3973, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37285115

ABSTRACT

PURPOSE: The response to immune checkpoint inhibitors (ICI) often differs between genders in non-small cell lung cancer (NSCLC), but metanalyses results are controversial, and no clear mechanisms are defined. We aim at clarifying the molecular circuitries explaining the differential gender-related response to anti-PD-1/anti-PD-L1 agents in NSCLC. EXPERIMENTAL DESIGN: We prospectively analyzed a cohort of patients with NSCLC treated with ICI as a first-line approach, and we identified the molecular mechanisms determining the differential efficacy of ICI in 29 NSCLC cell lines of both genders, recapitulating patients' phenotype. We validated new immunotherapy strategies in mice bearing NSCLC patient-derived xenografts and human reconstituted immune system ("immune-PDXs"). RESULTS: In patients, we found that estrogen receptor α (ERα) was a predictive factor of response to pembrolizumab, stronger than gender and PD-L1 levels, and was directly correlated with PD-L1 expression, particularly in female patients. ERα transcriptionally upregulated CD274/PD-L1 gene, more in females than in males. This axis was activated by 17-ß-estradiol, autocrinely produced by intratumor aromatase, and by the EGFR-downstream effectors Akt and ERK1/2 that activated ERα. The efficacy of pembrolizumab in immune-PDXs was significantly improved by the aromatase inhibitor letrozole, which reduced PD-L1 and increased the percentage of antitumor CD8+T-lymphocytes, NK cells, and Vγ9Vδ2 T-lymphocytes, producing durable control and even tumor regression after continuous administration, with maximal benefit in 17-ß-estradiol/ERα highfemale immune-xenografts. CONCLUSIONS: Our work unveils that 17-ß-estradiol/ERα status predicts the response to pembrolizumab in patients with NSCLC. Second, we propose aromatase inhibitors as new gender-tailored immune-adjuvants in NSCLC. See related commentary by Valencia et al., p. 3832.


Subject(s)
Antineoplastic Agents, Immunological , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Female , Male , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Receptors, Estrogen/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Estrogen Receptor alpha/genetics , B7-H1 Antigen/antagonists & inhibitors , Estradiol/pharmacology , Estradiol/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Estrogens
2.
Expert Rev Clin Pharmacol ; 15(3): 305-322, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35533249

ABSTRACT

INTRODUCTION: Malignant mesothelioma (MMe) is an aggressive rare cancer of the mesothelium, associated with asbestos exposure. MMe is currently an incurable disease at all stages mainly due to resistance to treatments. It is therefore necessary to elucidate key mechanisms underlying chemoresistance, in an effort to exploit them as novel therapeutic targets. AREAS COVERED: Chemoresistance is frequently elicited by microRNA (miRNA) alterations and splicing deregulations. Indeed, several miRNAs, such as miR-29c, have been shown to exert oncogenic or oncosuppressive activity. Alterations in the splicing machinery might also be involved in chemoresistance. Moreover, the Notch signaling pathway, often deregulated in MMe, plays a key role in cancer stem cells formation and self-renewal, leading to drug resistance and relapses. EXPERT OPINION: The prognosis of MMe in patients varies among different tumors and patient characteristics, and novel biomarkers and therapies are warranted. This work aims at giving an overview of MMe, with a special focus on state-of-the-art treatments and new therapeutic strategies against vulnerabilities emerging from studies on epigenetics factors. Besides, this review is also the first to discuss the interplay between miRNAs and alternative splicing as well as the role of Notch as new promising frontiers to overcome drug resistance in MMe.


Subject(s)
Mesothelioma, Malignant , MicroRNAs , RNA Splicing , Receptors, Notch , Drug Resistance, Neoplasm/genetics , Humans , Mesothelioma, Malignant/genetics , MicroRNAs/genetics , Neoplasm Recurrence, Local , Prognosis , RNA Splicing/genetics , Receptors, Notch/metabolism
3.
Molecules ; 27(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35268783

ABSTRACT

A new sigma-2 (σ2) receptor ligand (FA4) was efficiently synthesized and evaluated for cytotoxic, proapoptotic, and antimigratory activity on pancreatic ductal adenocarcinoma (PDAC) primary cell cultures, which restrained the aggressive and chemoresistant behavior of PDAC. This compound showed relevant antiproliferative activity with half maximal inhibitory concentration (IC50) values ranging from 0.701 to 0.825 µM. The cytotoxic activity was associated with induction of apoptosis, resulting in apoptotic indexes higher than those observed after exposure to a clinically relevant concentration of the gemcitabine, the first-line drug used against PDAC. Interestingly, FA4 was also able to significantly inhibit the migration rate of both PDAC-1 and PDAC-2 cells in the scratch wound-healing assay. In conclusion, our results support further studies to improve the library of thiosemicarbazones targeting the σ-2 receptor for a deeper understanding of the relationship between the biological activity of these compounds and the development of more efficient anticancer compounds against PDAC.


Subject(s)
Pancreatic Neoplasms , Pancreatic Neoplasms
4.
Cancers (Basel) ; 13(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066159

ABSTRACT

BACKGROUND: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer generally diagnosed at an advanced stage and characterized by a poor prognosis. The absence of alterations in druggable kinases, together with an immune-suppressive tumor microenvironment, limits the use of molecular targeted therapies, making the treatment of MPM particularly challenging. Here we investigated the in vitro susceptibility of MPM to lurbinectedin (PM01183), a marine-derived drug that recently received accelerated approval by the FDA for the treatment of patients with metastatic small cell lung cancer with disease progression on or after platinum-based chemotherapy. METHODS: A panel of primary MPM cultures, resembling the three major MPM histological subtypes (epithelioid, sarcomatoid, and biphasic), was characterized in terms of BAP1 status and histological markers. Subsequently, we explored the effects of lurbinectedin at nanomolar concentration on cell cycle, cell viability, DNA damage, genotoxic stress response, and proliferation. RESULTS: Stabilized MPM cultures exhibited high sensitivity to lurbinectedin independently from the BAP1 mutational status and histological classification. Specifically, we observed that lurbinectedin rapidly promoted a cell cycle arrest in the S-phase and the activation of the DNA damage response, two conditions that invariably resulted in an irreversible DNA fragmentation, together with strong apoptotic cell death. Moreover, the analysis of long-term treatment indicated that lurbinectedin severely impacts MPM transforming abilities in vitro. CONCLUSION: Overall, our data provide evidence that lurbinectedin exerts a potent antitumoral activity on primary MPM cells, independently from both the histological subtype and BAP1 alteration, suggesting its potential activity in the treatment of MPM patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...