Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 213: 108848, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908350

ABSTRACT

Arsenic (As) is an acute toxic metalloid that affects plant growth and development. As is found in the environment in organic and inorganic forms, but arsenite As(III) and arsenate As(V) are the most prevalent forms that negatively impact the plants. Roots exposed to As can easily absorb it mainly through transporters that carry vital mineral nutrients. As reach the food chain via crops irrigated with As-polluted water and exerts a negative impact. Even at low levels, As exposure disrupts the regular functioning of plants by generating a high level of reactive oxygen species (ROS) results into oxidative damage, and disruption of redox system. Plants have built-in defence mechanisms to combat this oxidative damage. The development of a food crop with lower As levels is dependent upon understanding the molecular process of As detoxification in plants, which will help reduce the consumption of As-contaminated food. Numerous genes in plants that may provide tolerance under hazardous conditions have been examined using genetic engineering techniques. The suppression of genes by RNA interference (RNAi) and CRISPR-Cas 9 (CRISPR associated protein 9) technology revealed an intriguing approach for developing a crop that has minimal As levels in consumable portions. This study aims to present current information on the biochemical and molecular networks associated with As uptake, as well as recent advances in the field of As mitigation using exogenous salicylic acid (SA), Serendipita indica and biotechnological tools in terms of generating As-tolerant plants with low As accumulation.


Subject(s)
Arsenic , Arsenic/metabolism , Arsenic/toxicity , Biological Transport , Plants/metabolism , Plants/drug effects , Inactivation, Metabolic , Crops, Agricultural/metabolism , Crops, Agricultural/drug effects
2.
Plant Sci ; 334: 111736, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37211221

ABSTRACT

The tomato is well-known for its anti-oxidative and anti-cancer properties, and with a wide range of health benefits is an important cash crop for human well-being. However, environmental stresses (especially abiotic) are having a deleterious effect on plant growth and productivity, including tomato. In this review, authors describe how salinity stress imposes risk consequences on growth and developmental processes of tomato through toxicity by ethylene (ET) and cyanide (HCN), and ionic, oxidative, and osmotic stresses. Recent research has clarified how salinity stress induced-ACS and - ß-CAS expressions stimulate the accumulation of ET and HCN, wherein the action of salicylic acid (SA),compatible solutes (CSs), polyamines (PAs) and ET inhibitors (ETIs) regulate ET and HCN metabolism. Here we emphasize how ET, SA and PA cooperates with mitochondrial alternating oxidase (AOX), salt overly sensitive (SOS) pathways and the antioxidants (ANTOX) system to better understand the salinity stress resistance mechanism. The current literature evaluated in this paper provides an overview of salinity stress resistance mechanism involving synchronized routes of ET metabolism by SA and PAs, connecting regulated network of central physiological processes governing through the action of AOX, ß-CAS, SOS and ANTOX pathways, which might be crucial for the development of tomato.


Subject(s)
Ethylenes , Salt Stress , Solanum lycopersicum , Ethylenes/metabolism , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Salt Stress/physiology
3.
Plant Signal Behav ; 16(11): 1950888, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34252347

ABSTRACT

Tomato is an important crop for its high nutritional and medicinal properties. The role of salicylic acid (SA) in 1-aminocyclopropane-1-carboxylate synthase (ACS), sodium-hydrogen exchanger (NHX1), salt overly sensitive 1 (sos1) and high-affinity K+ transporter (HKT1;2) transcripts, and ACS enzyme activity and ethylene (ET) production, and growth and physiological attributes was evaluated in tomato cv. Pusa Ruby under salinity stress. Thirty days-old seedlings treated with 0 mM NaCl, 250 mM NaCl, 250 mM NaCl plus 100 µM SA were assessed for different growth and physiological parameters at 45 DAS. Results showed ACS, NHX1, sos1 and HKT1;2 transcripts were significantly changed in SA treated plants. The ACS enzyme activity and ET content were considerably decreased in SA treated plants. Shoot length (SL), root length (RL), number of leaves (NL), leaf area per plant (LA), shoot fresh weight (SFW) and root fresh weight (RFW) were also improved under SA treatment. Conversely, the electrolyte leakage and sodium ion (Na+) content were significantly reduced in SA treated plants. In addition, the endogenous proline and potassium ion (K+) content, and K+/Na+ ratio were considerably increased under SA treatment. Likewise, antioxidant enzymes (SOD, CAT, APX and GR) profile were better in SA treated plant. The present findings suggest that SA reverse the negative effects of salinity stress and stress induced ET production by modulating ACS, NHX, sos1 and HKT1;2 transcript level, and improving various growth and physiological parameters, and antioxidants enzymes profile. This will contribute to a better understanding of salinity stress tolerance mechanisms of tomato plants involving SA and ET cross talk and ions homeostasis to develop more tolerant plant.


Subject(s)
Ethylenes/biosynthesis , Salicylic Acid/metabolism , Salt Tolerance/drug effects , Salt Tolerance/genetics , Sodium/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant , Genes, Plant
4.
Sci Rep ; 9(1): 18361, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31797981

ABSTRACT

Malformation of mango inflorescences (MMI) disease causes severe economic losses worldwide. Present research investigates the underlying causes of MMI. Results revealed significantly higher levels of cyanide, a by-product of ethylene biosynthesis, in malformed inflorescences (MI) of mango cultivars. There was a significant rise in ACS transcripts, ACS enzyme activity and cyanide and ethylene levels in MI as compared to healthy inflorescences (HI). Significant differences in levels of methionine, phosphate, S-adenosyl-L-methionine, S-adenosyl-L-homocysteine, ascorbate and glutathione, and activities of dehydroascorbate reductase and glutathione reductase were seen in MI over HI. Further, a lower expression of ß-cyanoalanine synthase (ß-CAS) transcript was associated with decreased cellular ß-CAS activity in MI, indicating accumulation of unmetabolized cyanide. TEM studies showed increased gum-resinosis and necrotic cell organelles, which might be attributed to unmetabolized cyanide. In field trials, increased malformed-necrotic-inflorescence (MNI) by spraying ethrel and decreased MNI by treating with ethylene inhibitors (silver and cobalt ions) further confirmed the involvement of cyanide in MMI. Implying a role for cyanide in MMI at the physiological and molecular level, this study will contribute to better understanding of the etiology of mango inflorescence malformation, and also help manipulate mango varieties genetically for resistance to malformation.


Subject(s)
Amino Acid Oxidoreductases/genetics , Lyases/genetics , Mangifera/genetics , Plant Diseases/genetics , Cyanides/metabolism , Ethylenes/metabolism , Fusarium/genetics , Fusarium/pathogenicity , Gene Expression Regulation, Plant , Inactivation, Metabolic/genetics , Inflorescence/growth & development , Inflorescence/microbiology , Mangifera/growth & development , Mangifera/microbiology , Methionine/metabolism , Phosphates/metabolism , Plant Diseases/microbiology , S-Adenosylmethionine/metabolism
5.
Genomics ; 111(5): 1026-1033, 2019 09.
Article in English | MEDLINE | ID: mdl-30476555

ABSTRACT

Somatic embryogenesis (SEG) is one of the best techniques for mass production of economically important plants. It is also used for the study of morphology, anatomy, physiology, genetics and molecular mechanism of embryo development. Somatic Embryos (SE) are bipolar structures that develop from a cell other than a gamete or zygote. SEG reflects the unique developmental potential of plant somatic cells, resulting in the transition of the differentiated somatic cells to embryogenic cells to follow the zygotic embryo stages. There are several biochemical and physiological processes that transformed a single somatic cell to a whole plant. SE studies provide insight into cell mechanisms governing the totipotency process in plants. Previously, in vitro studies have suggested the role of various regulatory genes in embryogenic transition that are triggered by plant hormones in response to stress. The omic studies identify the specific genes, transcripts, and proteins required for somatic embryogenesis development. MicroRNAs (miRNAs) are small, 19-24 nucleotides (nt), non-coding small RNA regulatory molecules controlling a large number of biological processes. In addition to their role in SEG, miRNAs play vital role in plant development, secondary metabolite synthesis and metabolism of macromolecules, hormone signal transduction, and tolerance of plants to biotic and abiotic stresses. During last decade several types of miRNAs involved in SEG have been reported. Among these miRNAs, miR156, miR162, miR166a, miR167, miR168, miR171a/b, miR171c, miR393, miR397 and miR398 played very active role during various stages of SEG. In this review, we highlighted the role of these as well as other miRNAs in some economically important plants.


Subject(s)
Magnoliopsida/genetics , MicroRNAs/genetics , Plant Somatic Embryogenesis Techniques/methods , Crops, Agricultural/genetics , Plant Breeding/methods
6.
Plant Signal Behav ; 10(3): e993264, 2015.
Article in English | MEDLINE | ID: mdl-25751309

ABSTRACT

Floral malformation is a main constraint to reduce fruit yield in mango plants. Recently, we report on the role of putrescine in normalizing the functional morphology of mango flower by reducing various adverse effects of ethylene. Here, ethrel, an ethylene releasing compound, was exogenously applied to mango plant cv Amrapali to evaluate the response of flower development under high level of ethylene. Scanning electron microscopy (SEM) study showed that ethrel treated flowers were observed to progressively be deformed and remain unbloom. The flower buds were not distinguishable and flower parts such as petals, sepals, anther and stigma were not properly developed. The stamen showed fused anther lobes and carpel depicted curved style with pointed stigma. The findings of present study suggest the involvement of ethylene to abort the functional morphology of flower and thereby development of malformation.


Subject(s)
Ethylenes/metabolism , Flowers/growth & development , Mangifera/metabolism , Organophosphorus Compounds/pharmacology , Plant Diseases , Flowers/drug effects , Flowers/metabolism , Mangifera/drug effects , Microscopy, Electron, Scanning/methods , Plant Development/drug effects , Putrescine/pharmacology
7.
Mol Biol Rep ; 42(6): 1139-48, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25633281

ABSTRACT

Salt Overly Sensitive (SOS) pathway comprising SOS1, SOS2 and SOS3 genes has been recognized as the key mechanism controlling ion homeostasis under salinity stress. SOS2 component of this pathway encodes a serine/threonine protein kinase that together with SOS3 activates downstream Na(+)/H(+) antiporter SOS1, reestablishing cellular ion homeostasis under salinity stress. In the present study, we have found that the transcript levels of BjSOS2 are induced in response to various abiotic stresses. We have isolated a 713 bp promoter region of SOS2 gene from Brassica juncea to study the regulation of BjSOS2 under various abiotic stress conditions and further, to examine utility of the cloned upstream region in genetic engineering experiments. For this purpose, 713 bp BjSOS2 promoter:ß-glucuronidase (GUS) fusion construct, along with its two subsequent 5' deletion derivatives, D1 (443 bp) and D2 (209 bp), were stably transformed into B. juncea. Functional analysis of transgenic lines revealed significant increase in promoter activity under salinity, desiccation as well as abscisic acid (ABA) treatment which was consistent with increased transcript levels of GUS gene. BjSOS2 promoter possesses strong multi-stress inducible nature, suggesting its involvement in various aspects of stress signaling. Considering the fact that the simultaneous presence of multiple abiotic stress conditions under field conditions is a challenging threat to crop productivity, future studies may utilize the BjSOS2 promoter to drive stress-inducible expression of genes involved in imparting tolerance to multiple stresses.


Subject(s)
Mustard Plant/genetics , Plant Proteins/genetics , Promoter Regions, Genetic/genetics , Salt Tolerance/genetics , Abscisic Acid/pharmacology , Base Sequence , Blotting, Northern , Cloning, Molecular , Desiccation , Gene Expression Regulation, Plant/drug effects , Glucuronidase/genetics , Glucuronidase/metabolism , Histocytochemistry , Molecular Sequence Data , Mustard Plant/metabolism , Plant Growth Regulators/pharmacology , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Seedlings/genetics , Seedlings/metabolism , Sodium Chloride/pharmacology , Temperature
8.
Rice (N Y) ; 7(1): 17, 2014.
Article in English | MEDLINE | ID: mdl-25184028

ABSTRACT

BACKGROUND: The SUV3 (suppressor of Var 3) gene encodes a DNA and RNA helicase, which is localized in the mitochondria. Plant SUV3 has not yet been characterized in detail. However, the Arabidopsis ortholog of SUV3 (AT4G14790) has been shown to be involved in embryo sac development. Previously, we have reported that rice SUV3 functions as DNA and RNA helicase and provides salinity stress tolerance by maintaining photosynthesis and antioxidant machinery. Here, we report further analysis of the transgenic OsSUV3 rice plants under salt stress. FINDINGS: The transgenic OsSUV3 overexpressing rice T1 lines showed significantly higher endogenous content of plant hormones viz., gibberellic acid (GA3), zeatin (Z) and indole-3-acetic acid (IAA) in leaf, stem and root as compared to wild-type (WT), vector control (VC) and antisense (AS) plants under salt (200 mM NaCl) stress condition. A similar trend of endogenous plant hormones profile was also reflected in the T2 generation of OsSUV3 transgenic rice under defined parameters and stress condition. CONCLUSIONS: In response to stress, OsSUV3 rice plants maintained plant hormone levels that regulate the expression of several stress-induced genes and reduce adverse effects of salt on plant growth and development and therefore sustains crop productivity.

9.
Microb Cell Fact ; 13: 66, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24885352

ABSTRACT

Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers.


Subject(s)
Agriculture , Fertilizers , Plants/microbiology , Soil Microbiology , Microbiota , Plant Roots/microbiology
10.
Plant Signal Behav ; 9(4): e28715, 2014.
Article in English | MEDLINE | ID: mdl-24691131

ABSTRACT

Mango malformation is the most dangerous disease to mango worldwide. There are hints that Fusarium mangiferae might be one of the probable casual agents of disease. Recently, we reported on Fusarium isolates obtained from the mango tarai region of Uttarakhand acquiring morphological features of F. mangiferae. Here, further confirmation of Fusarium isolates were made by PCR amplification using primers specific to the translation elongation factors 1α and ß-tubulin gene of F. mangiferae. Further, SDS-PAGE and RAPD profiles showed genetic variability among isolates of F. mangiferae. This study provides further direct evidence of involvement of different strains of F. mangiferae in malformation diseases of mango in the tarai region of the Uttarakhand state.


Subject(s)
Fusarium/isolation & purification , Mangifera/microbiology , Fusarium/physiology , Host-Pathogen Interactions , India , Plant Diseases/microbiology
11.
Plant Signal Behav ; 9(1): e27538, 2014.
Article in English | MEDLINE | ID: mdl-24394360

ABSTRACT

Cyclophilins are molecular chaperone act as peptidyl prolyl cis-trans isomerase responsible for protein folding and assembly in many normal cellular processes, stabilize proteins and membranes under stress conditions. Recently, we report on the role cyclophilin A-like gene from Piriformospora indica (PiCypA) in salinity stress tolerance in T1 transgenic and up to seedling stage of T2 transgenic of tobacco plants. Here, PiCypA T2 generation matured tobacco plants were evaluated under salt (200 mM NaCl) up to flowering and seed set stages. We found that PiCypA T2 tobacco lines showed comparatively better survival and exhibited higher root growth and fresh weight as compared with wild type and vector control. This study provides further direct evidence that PiCypA transgene maintained the sustainability in providing salinity stress tolerance in T2 generation of transgenic tobacco plants.


Subject(s)
Basidiomycota/genetics , Cyclophilin A/genetics , Nicotiana/physiology , Salt Tolerance/genetics , Fungal Proteins/genetics , Plants, Genetically Modified/physiology , Salinity , Stress, Physiological
12.
Plant Signal Behav ; 9(7): e29015, 2014.
Article in English | MEDLINE | ID: mdl-25763485

ABSTRACT

Field experiment was conducted at G.B.P.U.A.T. Pantnagar, Uttarakhand, India in rainy season of 2008 and 2009 to study the impacts of increased nitrogen doses on growth dynamics, biomass partitioning, chaffy grain and nitrogen use efficiency in 4 rice genotypes viz., Vasumati, Tulsi, Kasturi and Krishna Hamsa. Four doses (N(0), N(50), N(100) and N(200) kg N ha(-1)) of nitrogen in the form of urea were applied in 3 split. Increased trend in growth dynamics during active tillering and flowering stage, and biomass partitioning at the time of active tillering and flowering stage was observed with respect to nitrogen doses. Chaffy grain number and chaffy grain weight per 5 panicles was significantly increased with enhancing nitrogen doses and was highest for Vasumati. Nitrogen use efficiency (NUE) was increased up to N(100) kg N ha(-1) and it was declined with rising nitrogen doses (N(200) kg N ha(-1)). The highest values for NUE was achieved by rice genotype Krishna Hamsa whereas lowest by Vasumati. In addition to this, a significant correlation between nitrogen doses and growth dynamics, biomass partitioning and chaffy grain was observed. These findings suggest that growth dynamics, biomass partitioning, chaffy grain could be enhanced by the input of high rate of nitrogen fertilizer but not nitrogen use efficiency. Therefore, this study is useful to screen most N efficient genotypes which can be strongly suggested to rice growers to enhance crop yield irrespective of use of high dose of N fertilizers.


Subject(s)
Agriculture/methods , Fertilizers , Genotype , Nitrogen/metabolism , Oryza/genetics , Seeds , Biomass , India , Oryza/growth & development , Oryza/metabolism , Urea/metabolism
13.
Plant Signal Behav ; 9(7): e29377, 2014.
Article in English | MEDLINE | ID: mdl-25763502

ABSTRACT

The plant growth promoting rhizobacteria (PGPRs) as a biofertilizer provide agricultural benefits to advance various crops productivity. Recently, we discovered a novel Azotobacter vinellandii (SRIAz3) from rice rhizosphere, which is well competent to improve rice productivity. In this study, we investigated a role of A. vinellandii to confer salinity tolerance in rice (var. IR64). A. vinellandii inoculated rice plants showed higher proline and malondialdehyde content under 200 mM NaCl stress as compared with uninoculated one. The endogenous level of plant hormones viz., indole-3 acetic acid (IAA), gibberellins (GA3), zeatint (Zt) was higher in A. vinellandii inoculated plants under high salinity. The fresh biomass of root and shoot were relatively elevated in A. vinellandii inoculated rice. Further, the macronutrient profile was superior in A. vinellandii inoculated plants under salinity as compared with non-inoculated plants. The present findings further suggest that A. vinellandii, a potent biofertilzer, potentially confer salinity stress tolerance in rice via sustaining growth and improving compatible solutes and nutrients profile and thereby crop improvement.


Subject(s)
Azotobacter , Endophytes , Oryza/microbiology , Plant Growth Regulators/metabolism , Salt Tolerance , Sodium Chloride/metabolism , Stress, Physiological , Biomass , Fertilizers , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Oryza/growth & development , Oryza/metabolism , Oxidative Stress , Photosynthesis , Plant Roots/growth & development , Plant Roots/microbiology , Plant Shoots/growth & development , Salinity , Seedlings , Symbiosis
14.
Commun Integr Biol ; 6(5): e25260, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-24265852

ABSTRACT

Cyclophilins (CYP), a member of immunophillin group of proteins, are more often conserved in all genera including plants. Here, we report on the identification of a new cyclophilin gene OsCYP-25 (LOC_Os09 g39780) from rice which found to be upregulated in response to various abiotic stresses viz., salinity, cold, heat and drought. It has an ORF of 540 bp, encoding a protein of 179 amino acids, consisting of PPIase domain, which is highly conserved. The OsCYP-25 promoter analysis revealed that different cis-regulatory elements (e.g., MYBCORE, MYC, CBFHV, GT1GMSCAM4, DRECRTCOREAT, CCAATBOX1, WRKY71OS and WBOXATNPR1) are involved to mediate OsCYP-25 response under stress. We have also predicted interacting partners by STRING software. In interactome, protein partners includes WD domain containing protein, the 60S ribosome subunit biogenesis protein, the ribosomal protein L10, the DEAD-box helicase, the EIF-2α, YT521-B protein, the 60S ribosomal protein and the PPR repeat domain containing protein. The in silico analysis showed that OsCYP-25 interacts with different proteins involved in cell growth, differentiation, ribosome biogenesis, RNA metabolism, RNA editing, gene expression, signal transduction or stress response. These findings suggest that OsCYP-25 might perform an important function in mediating wide range of cellular response under multiple abiotic stresses.

15.
Plant Physiol Biochem ; 70: 403-10, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23831950

ABSTRACT

The beneficial fungi are potentially useful in agriculture sector to avail several services to crop plants such as water status, nutrient enrichment, stress tolerance, protection, weed control and bio-control. Natural agro-ecosystem relies on fungi because of it takes part in soil organic matter decomposition, nutrient acquisition, organic matter recycling, nutrient recycling, antagonism against plant pests, and crop management. The crucial role of fungi in normalizing the toxic effects of phenols, HCN and ROS by ß-CAS, ACC demainase and antioxidant enzymes in plants is well documented. Fungi also play a part in various physiological processes such as water uptake, stomatal movement, mineral uptake, photosynthesis and biosynthesis of lignan, auxins and ethylene to improve growth and enhance plant fitness to cope heat, cold, salinity, drought and heavy metal stress. Here, we highlighted the ethylene- and cyclophilin A (CypA)-mediated response of Piriformospora indica for sustainable crop production under adverse environmental conditions.


Subject(s)
Adaptation, Physiological , Crops, Agricultural/microbiology , Cyclophilin A/metabolism , Ethylenes/metabolism , Fungi , Mycorrhizae , Symbiosis , Agriculture , Crops, Agricultural/metabolism , Crops, Agricultural/physiology
16.
Plant Physiol Biochem ; 69: 34-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23707883

ABSTRACT

Malformation is arguably the most crucial disease of mango (Mangifera indica L.). The etiology of the disease has not yet been successfully resolved. Here, we quantified the endogenous ethylene content in malformed and healthy vegetative and floral tissues of mango cultivars viz., Amrapali, Bombay green, Chausa, Dushehri and Mallika. Levels of ethylene were higher in malformed vegetative and floral tissues as compared with that of healthy tissues at both prior to full bloom and full bloom stages. The study also revealed that isolates of Fusarium dissected from mango exhibited most morphological similarities to the accepted standard features of Fusarium mangiferae. The growth dynamic of F. mangiferae were evaluated with varying temperatures ranging from 5 to 40 °C. Temperatures of 25 °C, 30 °C and 35 °C were better suited for growth of F. mangiferae than temperatures of 20 °C or 40 °C. Conidium germination of F. mangiferae was maximum at 30 °C and minimum at <15 °C. World-wide occurrence of mango malformation showed its most severity at 10-15 °C temperature range. Stress ethylene level is higher in diseased tissue at the same temperature range where growth of Fusaria is found to be completely restricted. The present study provides direct evidence that low temperature induced 'stress ethylene' is potentially responsible for the disease while on the other hand Fusarium role in the disease either through toxic principle or malformation inducing principle is not conclusive at <15 °C and is rather out of question.


Subject(s)
Ethylenes/metabolism , Fusarium/pathogenicity , Mangifera/metabolism , Mangifera/microbiology , Flowers/growth & development , Flowers/metabolism , Flowers/microbiology , Mangifera/growth & development , Temperature
17.
Plant Signal Behav ; 8(6): e24564, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23603954

ABSTRACT

Wheat (Triticum aestivum L.), a staple food crop, is of great commercial importance. Its production is restricted due to multiple environmental stresses. There are indications that the wheat production is consistently limited by terminal heat stress. Previous studies revealed a varied response of different wheat genotypes under heat stress conditions. Here, comparative physiological changes in wheat genotypes viz., DBW-140, Raj-3765, PBW-574, K-0-307 and HS-240 were evaluated under timely and late sown conditions in rabi season. We observed that heat stress dramatically affects chlorophyll content and leaf area index (LAI) in sensitive genotypes whereas proline and malondialdehyde (MDA) content were higher in tolerant genotypes under late sown conditions. Further, the heat susceptibility index (HIS) for 1,000-grain weight, grain weight and grain yield of wheat genotypes viz., HS 240 and K-0-307 was highest as compared with DBW 140, Raj 3765 and PBW 574 genotypes. This finding suggests that wheat genotypes are found to differ in their ability to respond to heat, thereby tolerance, which could be useful as genetic stock to develop wheat tolerant varieties in breeding programs.


Subject(s)
Hot Temperature , Stress, Physiological , Triticum/physiology , Chlorophyll/metabolism , Genotype , Malondialdehyde/metabolism , Proline/metabolism , Superoxide Dismutase/metabolism
18.
Plant Signal Behav ; 8(4): e23519, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23333982

ABSTRACT

Drought is the major environmental stress that limits rice productivity worldwide. In vitro somaclonal variation using different selection agents has been used for crop improvement. Here, rice plants of cv PR113 were selected in vitro on 30, 50 and 70 g L(-1) polyethylene glycol 6,000 (PEG). Callus growth, proliferation, calli volume (first and second culture) and plantlet regeneration (third culture) were found to be decreased upto a certain level to acquire tolerance to PEG-induced drought. From the field data, 30 g L(-1) PEG lines showed higher vegetative growth (plant height, tiller number, leaf number, shoot weight and root growth) as compared with 50 g L(-1) PEG selected somaclone lines under limited irrigation. The yield parameters-panicle length, panicle weight, grains per panicle, 1,000-grain weight, grain yield per plant, harvest index and grain straw ratio were also higher in 30 g L(-1) PEG lines as compared with 50 g L(-1) PEG lines. The results, therefore indicate that 30 g L(-1) PEG selected somaclone lines were more suited than 50 g L(-1) PEG selected somaclone lines under stress as compared with WT. The finding suggests that rice cv PR113 somaclones generated on PEG are found to be drought tolerant under field condition with better yield.


Subject(s)
Adaptation, Physiological , Droughts , Oryza/growth & development , Plant Structures/growth & development , Polyethylene Glycols , Stress, Physiological , Water , Clone Cells , Oryza/genetics , Phenotype , Plant Leaves , Plant Roots
19.
Plant Signal Behav ; 8(3): e23167, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23299320

ABSTRACT

Mango malformation is the most threaten disease that limits mango production, worldwide. For a long time, due to its complex nature, the cause and causal agents were strongly disputed. Diverse Fusaria, including Fusarium mangiferae, are known to be associated with the disease. There are indications that augmented level of endogenous ethylene in response to various abiotic and biotic stresses alters the morphology of reproductive organs. Here, scanning electron microscopy (SEM) of healthy and malformed reproductive organs of mango cv. Baramasi was performed to compare the functional morphology. The SEM study revealed that anthers of hermaphrodite healthy flowers were bilobed with large number of turgid pollen grains whereas malformed flowers showed fused lobed anthers with scanty deformed pollen grains. Furthermore, the stigma of healthy flowers exhibited a broad landing pad as compared to malformed stigma which showed hooked and pointed tip. All these impaired morphology of male and female reproductive organs lead to failure of sexual reproduction. This is the first evidence to show fused lobed anther with impaired pollen grains and hooked stigma with poor stigmatic receptivity are mainly responsible for restricting the pollen germination and pollen tube growth. Here we suggest that abnormal development of anthers and pistils is due to endogenously produced stress ethylene. Further, added load of cyanide, a byproduct of ethylene biosynthesis, may also contribute to the development of necrosis which lead to desiccation of anther and pistil during hypersensitive response of plants.


Subject(s)
Ethylenes/metabolism , Flowers , Fruit , Mangifera , Plant Diseases , Pollination , Microscopy, Electron, Scanning , Plant Diseases/microbiology , Pollen , Reproduction
20.
Plant Signal Behav ; 8(1): e22673, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23221756

ABSTRACT

Malformation is arguably the most crucial disease of mango (Mangifera indica L.) at present. It is receiving great attention not only because of its widespread and destructive nature but also because of its etiology and control is not absolutely understood. Recently, Fusarium mangiferae is found to be associated with mango malformation disease. There are indications that stress ethylene production could be involved in the disease. Here we have shown the first direct evidence of production of ethylene in pure culture of F. mangiferae obtained from mango. The study also revealed that all the isolates dissected from mango acquire morphological features of F. mangiferae showing most similarity to the features of species with accepted standard features. The isolates of F. mangiferae from mango were observed to produce ethylene in significant amounts, ranging from 9.28-13.66 n mol/g dry wt/day. The findings presented here suggest that F. mangiferae could contribute to the malformation of mango by producing ethylene and probably stimulating stress ethylene production in malformed tissue of mango. Ethylene might be produced through 2-oxoglutarate-dependent oxygenase-type ethylene-forming-enzyme (EFE) pathway in Fusarium sp, which needs to be investigated.


Subject(s)
Ethylenes/biosynthesis , Fusarium/metabolism , Mangifera/microbiology , Plant Diseases/microbiology , Fruit
SELECTION OF CITATIONS
SEARCH DETAIL
...