Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(14): 141801, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33064514

ABSTRACT

The results of a 3+1 sterile neutrino search using eight years of data from the IceCube Neutrino Observatory are presented. A total of 305 735 muon neutrino events are analyzed in reconstructed energy-zenith space to test for signatures of a matter-enhanced oscillation that would occur given a sterile neutrino state with a mass-squared differences between 0.01 and 100 eV^{2}. The best-fit point is found to be at sin^{2}(2θ_{24})=0.10 and Δm_{41}^{2}=4.5 eV^{2}, which is consistent with the no sterile neutrino hypothesis with a p value of 8.0%.

2.
Phys Rev Lett ; 125(12): 121104, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33016752

ABSTRACT

We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010-2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (∼90%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16 TeV to 2.6 PeV, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be γ=2.53±0.07 and a flux normalization for each neutrino flavor of ϕ_{astro}=1.66_{-0.27}^{+0.25} at E_{0}=100 TeV, in agreement with IceCube's complementary muon neutrino results and with all-neutrino flavor fit results. In the measured energy range we reject spectral indices γ≤2.28 at ≥3σ significance level. Because of high neutrino energy resolution and low atmospheric neutrino backgrounds, this analysis provides the most detailed characterization of the neutrino flux at energies below ∼100 TeV compared to previous IceCube results. Results from fits assuming more complex neutrino flux models suggest a flux softening at high energies and a flux hardening at low energies (p value ≥0.06). The sizable and smooth flux measured below ∼100 TeV remains a puzzle. In order to not violate the isotropic diffuse gamma-ray background as measured by the Fermi Large Area Telescope, it suggests the existence of astrophysical neutrino sources characterized by dense environments which are opaque to gamma rays.

3.
Phys Rev Lett ; 124(5): 051103, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32083934

ABSTRACT

This Letter presents the results from pointlike neutrino source searches using ten years of IceCube data collected between April 6, 2008 and July 10, 2018. We evaluate the significance of an astrophysical signal from a pointlike source looking for an excess of clustered neutrino events with energies typically above ∼1 TeV among the background of atmospheric muons and neutrinos. We perform a full-sky scan, a search within a selected source catalog, a catalog population study, and three stacked Galactic catalog searches. The most significant point in the northern hemisphere from scanning the sky is coincident with the Seyfert II galaxy NGC 1068, which was included in the source catalog search. The excess at the coordinates of NGC 1068 is inconsistent with background expectations at the level of 2.9σ after accounting for statistical trials from the entire catalog. The combination of this result along with excesses observed at the coordinates of three other sources, including TXS 0506+056, suggests that, collectively, correlations with sources in the northern catalog are inconsistent with background at 3.3σ significance. The southern catalog is consistent with background. These results, all based on searches for a cumulative neutrino signal integrated over the 10 years of available data, motivate further study of these and similar sources, including time-dependent analyses, multimessenger correlations, and the possibility of stronger evidence with coming upgrades to the detector.

4.
Phys Rev Lett ; 122(5): 051102, 2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30822017

ABSTRACT

High-energy neutrino emission has been predicted for several short-lived astrophysical transients including gamma-ray bursts (GRBs), core-collapse supernovae with choked jets, and neutron star mergers. IceCube's optical and x-ray follow-up program searches for such transient sources by looking for two or more muon neutrino candidates in directional coincidence and arriving within 100 s. The measured rate of neutrino alerts is consistent with the expected rate of chance coincidences of atmospheric background events and no likely electromagnetic counterparts have been identified in Swift follow-up observations. Here, we calculate generic bounds on the neutrino flux of short-lived transient sources. Assuming an E^{-2.5} neutrino spectrum, we find that the neutrino flux of rare sources, like long gamma-ray bursts, is constrained to <5% of the detected astrophysical flux and the energy released in neutrinos (100 GeV to 10 PeV) by a median bright GRB-like source is <10^{52.5} erg. For a harder E^{-2.13} neutrino spectrum up to 30% of the flux could be produced by GRBs and the allowed median source energy is <10^{52} erg. A hypothetical population of transient sources has to be more common than 10^{-5} Mpc^{-3} yr^{-1} (5×10^{-8} Mpc^{-3} yr^{-1} for the E^{-2.13} spectrum) to account for the complete astrophysical neutrino flux.

5.
Phys Rev Lett ; 120(7): 071801, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29542976

ABSTRACT

We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ∼5 GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/E_{ν} as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δm_{32}^{2}=2.31_{-0.13}^{+0.11}×10^{-3} eV^{2} and sin^{2}θ_{23}=0.51_{-0.09}^{+0.07}, assuming normal neutrino mass ordering. These results are consistent with, and of similar precision to, those from accelerator- and reactor-based experiments.

6.
Eur Phys J C Part Fields ; 78(10): 831, 2018.
Article in English | MEDLINE | ID: mdl-30930683

ABSTRACT

With the observation of high-energy astrophysical neutrinos by the IceCube Neutrino Observatory, interest has risen in models of PeV-mass decaying dark matter particles to explain the observed flux. We present two dedicated experimental analyses to test this hypothesis. One analysis uses 6 years of IceCube data focusing on muon neutrino 'track' events from the Northern Hemisphere, while the second analysis uses 2 years of 'cascade' events from the full sky. Known background components and the hypothetical flux from unstable dark matter are fitted to the experimental data. Since no significant excess is observed in either analysis, lower limits on the lifetime of dark matter particles are derived: we obtain the strongest constraint to date, excluding lifetimes shorter than 10 28 s at 90% CL for dark matter masses above 10 TeV .

7.
Eur Phys J C Part Fields ; 77(10): 692, 2017.
Article in English | MEDLINE | ID: mdl-31997925

ABSTRACT

IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The ν µ energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software Truee. The resulting spectrum covers an E ν -range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows an excess of more than 1.9 σ in four adjacent bins for neutrino energies E ν ≥ 177.8 TeV . The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos.

8.
Phys Rev Lett ; 117(24): 241101, 2016 Dec 09.
Article in English | MEDLINE | ID: mdl-28009216

ABSTRACT

We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10^{9} GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high- energy neutrino-induced events which have deposited energies from 5×10^{5} GeV to above 10^{11} GeV. Two neutrino-induced events with an estimated deposited energy of (2.6±0.3)×10^{6} GeV, the highest neutrino energy observed so far, and (7.7±2.0)×10^{5} GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6σ. The hypothesis that the observed events are of cosmogenic origin is also rejected at >99% CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and γ-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.

9.
Phys Rev Lett ; 117(7): 071801, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27563950

ABSTRACT

The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous ν_{µ} or ν[over ¯]_{µ} disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation. The exclusion limits extend to sin^{2}2θ_{24}≤0.02 at Δm^{2}∼0.3 eV^{2} at the 90% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99% confidence level for the global best-fit value of |U_{e4}|^{2}.

SELECTION OF CITATIONS
SEARCH DETAIL
...