Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Fungal Genet Biol ; 164: 103750, 2023 01.
Article in English | MEDLINE | ID: mdl-36379411

ABSTRACT

Microorganisms have been used as biological control agents (BCAs) in agriculture for a long time, but their importance has increased dramatically over the last few years. The Penicillium steckii IBWF104-06 strain has presented strong BCA activity in greenhouse experiments performed against phytopathogenic fungi and oomycetes. P. steckii strains generally produce different antifungal tanzawaic acids; interesting compounds known to be catalyzed by polyketide synthetases in other fungi. Since the decalin structure is characteristic for tanzawaic acids, two polyketide synthase genes (PsPKS1 and PsPKS2) were selected for further analysis, which have similarity in sequence and gene cluster structure with genes that are known to be responsible for the biosynthesis of decalin-containing compounds. Subsequently, gene-inactivation mutants of both PsPKS1 and PsPKS2 have been generated. It was found, that the ΔPspks1 mutant cannot produce tanzawaic acids any more, whereas reintegration of the original PsPKS1 gene into the genome of ΔPspks1 reestablished tanzawaic acid production. The mutant ΔPspks2 is not altered in tanzawaic acids production. Interestingly, both mutants ΔPsPKS1 and ΔPsPKS2 still display strong BCA activity, indicating that the mechanism of action is not related to the production of tanzawaic acids.


Subject(s)
Penicillium , Polyketide Synthases , Polyketide Synthases/genetics , Naphthalenes , Fungi , Penicillium/genetics , Penicillium/chemistry
2.
Sci Total Environ ; 849: 157867, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35944624

ABSTRACT

Assessing the carbon footprint of marine bivalve aquaculture demands an accurate estimation of the CO2 release associated to capital goods and aquaculture operations but also to the metabolic CO2 budget of the cultured species. Nowadays, there are discrepancies on the processes to include in that budget, how to estimate them, and which scale should be applied, from individual to ecosystem. Site-specific environmental conditions and culture methods also affect significantly the estimates. Here, we have gathered environmental, biochemical and metabolic data from published scientific articles, reports and existing databases to present the metabolic CO2 budget for mussel aquaculture in the coastal inlets of the Northwest Iberian upwelling. We analyse the contribution of mussel flesh and shell production jointly and separately. At the individual scale, the shell CO2 budget is estimated from CO2 removal by shell matrix protein synthesis and CO2 release during calcification and respiration to support shell maintenance. Organic carbon in mussel flesh and CO2 released by respiration to support flesh maintenance contribute to the flesh CO2 budget. Only calcification and respiration processes are considered when estimating the metabolic carbon footprint of individual mussels because organic carbon in mussel flesh and shell returns to the atmosphere as CO2 in a relatively short period. While the metabolic carbon footprint associated to mussel shell remains constant at 365 kg CO2 per ton of shell, it varies from 92 to 578 kg CO2 per ton of mussel flesh. This large variability depends on mussel seeding time and harvesting size, due to the differential seasonal growth patterns of flesh and shell. Inclusion of the CO2 potentially immobilised in mussel faeces buried in the sediments would lead to a reduction of the metabolic carbon footprint estimates by up to 6 % compared with the individual estimates.


Subject(s)
Bivalvia , Ecosystem , Animals , Aquaculture , Carbon , Carbon Dioxide
3.
mSphere ; 7(4): e0023522, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35862816

ABSTRACT

Signaling of two-component systems by phosphoryl transfer requires interaction of the sensor kinase with the response regulator. Interaction of the C4-dicarboxylate-responsive and membrane-integral sensor kinase DcuS with the response regulator DcuR was studied. In vitro, the cytoplasmic part of DcuS (PASC-Kin) was employed. Stable complexes were formed, when either DcuS or DcuR were phosphorylated (Kd 22 ± 11 and 28 ± 7 nM, respectively). The unphosphorylated proteins produced a more labile complex (Kd 1380 ± 395 nM). Bacterial two-hybrid studies confirm interaction of DcuR with DcuS (and PASC-Kin) in vivo. The absolute contents of DcuR (197-979 pmol mg-1 protein) in the bacteria exceeded those of DcuS by more than 1 order of magnitude. According to the Kd values, DcuS exists in complex, with phosphorylated but also unphosphorylated DcuR. In live cell imaging, the predominantly freely diffusing DcuR becomes markedly less mobile after phosphorylation and activation of DcuS by fumarate. Portions of the low mobility fraction accumulated at the cell poles, the preferred location of DcuS, and other portions within the cell, representing phosphorylated DcuR bound to promoters. In the model, acitvation of DcuS increases the affinity toward DcuR, leading to DcuS-P × DcuR formation and phosphorylation of DcuR. The complex is stable enough for phosphate-transfer, but labile enough to allow exchange between DcuR from the cytosol and DcuR-P of the complex. Released DcuR-P diffuses to target promoters and binds. Uncomplexed DcuR-P in the cytosol binds to nonactivated DcuS and becomes dephosphorylated. The lower affinity between DcuR and DcuS avoids blocking of DcuS and allows rapid exchange of DcuR. IMPORTANCE Complex formation of membrane-bound sensor kinases with the response regulators represents an inherent step of signaling from the membrane to the promoters on the DNA. In the C4-dicarboxylate-sensing DcuS-DcuR two-component system, complex formation is strengthened by activation (phosphorylation) in vitro and in vivo, with trapping of the response regulator DcuR at the membrane. Single-molecule tracking of DcuR in the bacterial cell demonstrates two populations of DcuR with decreased mobility in the bacteria after activation: one at the membrane, but a second in the cytosol, likely representing DNA-bound DcuR. The data suggest a model with binding of DcuR to DcuS-P for phosphorylation, and of DcuR-P to DcuS for dephosphorylation, allowing rapid adaptation of the DcuR phosphorylation state. DcuR-P is released and transferred to DNA by 3D diffusion.


Subject(s)
DNA-Binding Proteins , Escherichia coli Proteins , Protein Kinases , Transcription Factors , DNA, Bacterial , DNA-Binding Proteins/genetics , Dicarboxylic Acid Transporters/genetics , Dicarboxylic Acid Transporters/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Fumarates/metabolism , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Protein Kinases/metabolism , Transcription Factors/genetics
4.
Nat Chem ; 14(1): 100-109, 2022 01.
Article in English | MEDLINE | ID: mdl-34795435

ABSTRACT

Although metals are essential for the molecular machineries of life, systematic methods for discovering metal-small molecule complexes from biological samples are limited. Here, we describe a two-step native electrospray ionization-mass spectrometry method, in which post-column pH adjustment and metal infusion are combined with ion identity molecular networking, a rule-based data analysis workflow. This method enabled the identification of metal-binding compounds in complex samples based on defined mass (m/z) offsets of ion species with the same chromatographic profiles. As this native electrospray metabolomics approach is suited to the use of any liquid chromatography-mass spectrometry system to explore the binding of any metal, this method has the potential to become an essential strategy for elucidating metal-binding molecules in biology.


Subject(s)
Mass Spectrometry/methods , Metabolomics/methods , Metals/metabolism , Binding Sites , Chromatography, Liquid/methods
5.
Microbiologyopen ; 10(6): e1229, 2021 11.
Article in English | MEDLINE | ID: mdl-34964294

ABSTRACT

The filamentous fungus Magnaporthe oryzae has the potential to be developed as an alternative platform organism for the heterologous production of industrially important enzymes. M. oryzae is easy to handle, fast-growing and unlike yeast, posttranslational modifications like N-glycosylations are similar to the human organism. Here, we established M. oryzae as a host for the expression of the unspecific peroxygenase from the basidiomycete Agrocybe aegerita (AaeUPO). Note, UPOs are attractive biocatalysts for selective oxyfunctionalization of non-activated carbon-hydrogen bonds. To improve and simplify the isolation of AaeUPO in M. oryzae, we fused a Magnaporthe signal peptide for protein secretion and set it under control of the strong EF1α-promoter. The success of the heterologous production of full-length AaeUPO in M. oryzae and the secretion of the functional enzyme was confirmed by a peroxygenase-specific enzyme assay. These results offer the possibility to establish the filamentous ascomycete M. oryzae as a broad applicable alternative expression system.


Subject(s)
Agrocybe/enzymology , Magnaporthe/genetics , Mixed Function Oxygenases/biosynthesis , Agrocybe/genetics , Eukaryotic Initiation Factor-1/genetics , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Magnaporthe/metabolism , Mixed Function Oxygenases/genetics , Promoter Regions, Genetic , Protein Sorting Signals/genetics , Recombinant Proteins/biosynthesis
6.
Int J Mol Sci ; 23(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35008825

ABSTRACT

Diseases caused by dimorphic phytopathogenic and systemic dimorphic fungi have markedly increased in prevalence in the last decades, and understanding the morphogenic transition to the virulent state might yield novel means of controlling dimorphic fungi. The dimorphic fungus Z. tritici causes significant economic impact on wheat production, and yet the regulation of the dimorphic switch, a key first step in successful plant colonization, is still largely unexplored in this fungus. The fungus is amenable to suppression by fungicides at this switch point, and the identification of the factors controlling the dimorphic switch provides a potential source of novel targets to control Septoria tritici blotch (STB). Inhibition of the dimorphic switch can potentially prevent penetration and avoid any damage to the host plant. The aim of the current work was to unveil genetic determinants of the dimorphic transition in Z. tritici by using a forward genetics strategy. Using this approach, we unveiled two novel factors involved in the switch to the pathogenic state and used reverse genetics and complementation to confirm the role of the novel virulence factors and further gained insight into the role of these genes, using transcriptome analysis via RNA-Seq. The transcriptomes generated potentially contain key determinants of the dimorphic transition.


Subject(s)
Agrobacterium/metabolism , Ascomycota/genetics , Ascomycota/pathogenicity , Fungal Proteins/metabolism , Mutagenesis, Insertional/genetics , Virulence Factors/metabolism , Ascomycota/growth & development , Base Sequence , Cell Wall/metabolism , DNA, Bacterial/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Gene Ontology , Genes, Fungal , Inactivation, Metabolic , Lipid Metabolism , Metals/metabolism , Mutation/genetics , Oxidative Stress/genetics , Pigmentation/genetics , Proteolysis , Temperature , Transcription, Genetic , Virulence/genetics
7.
BMC Genomics ; 20(1): 763, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31640564

ABSTRACT

BACKGROUND: One fundamental question in biology is how the evolution of eukaryotic signaling networks has taken place. "Loss of function" (lof) mutants from components of the high osmolarity glycerol (HOG) signaling pathway in the filamentous fungus Magnaporthe oryzae are viable, but impaired in osmoregulation. RESULTS: After long-term cultivation upon high osmolarity, stable individuals with reestablished osmoregulation capacity arise independently from each of the mutants with inactivated HOG pathway. This phenomenon is extremely reproducible and occurs only in osmosensitive mutants related to the HOG pathway - not in other osmosensitive Magnaporthe mutants. The major compatible solute produced by these adapted strains to cope with high osmolarity is glycerol, whereas it is arabitol in the wildtype strain. Genome and transcriptome analysis resulted in candidate genes related to glycerol metabolism, perhaps responsible for an epigenetic induced reestablishment of osmoregulation, since these genes do not show structural variations within the coding or promotor sequences. CONCLUSION: This is the first report of a stable adaptation in eukaryotes by producing different metabolites and opens a door for the scientific community since the HOG pathway is worked on intensively in many eukaryotic model organisms.


Subject(s)
Adaptation, Physiological/genetics , Gene Regulatory Networks , Glycerol/metabolism , Magnaporthe/physiology , Signal Transduction/genetics , Dioxoles/pharmacology , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Genome, Fungal/genetics , Loss of Function Mutation , Magnaporthe/drug effects , Magnaporthe/genetics , Magnaporthe/metabolism , Oryza/microbiology , Osmoregulation/genetics , Plant Diseases/microbiology , Pyrroles/pharmacology , Salt Stress
8.
Fungal Genet Biol ; 133: 103276, 2019 12.
Article in English | MEDLINE | ID: mdl-31550526

ABSTRACT

For many filamentous fungi with pathogenic lifestyles, the presence of distinct asexual conidia has been described. However, the role of these spore types remains mostly obscure. Colletotrichum graminicola is a hemibiotrophic filamentous fungus, causing anthracnose on maize plants with a high potential of epidemic disease spreading. C. graminicola generates two types of conidia. Falcate shaped conidia formed in necrotic lesions on maize tissues are able to generate appressoria with high efficiency and are considered key disease spreading propagules. The second conidia type, the smaller oval conidia, is formed in the vascular system of the infected plant, probably causing the distribution of the disease in planta. Barely any knowledge exists about how these conidia are able to exhibit their specific functions in the life cycle and pathogenicity of C. graminicola. Here, we show that germlings derived from both falcate and oval conidia differ in the secretion of a germination inhibitor and signals for germling fusion. Germination experiments combined with HPLC and mass spectrometry analyses revealed that germination of falcate conidia is regulated by the self-inhibitor mycosporine-glutamine, whereas this compound is absent from oval conidia cultures. Additionally, germlings derived from oval conidia undergo germling fusions at high frequencies and are able to induce such a fusion when co-incubated with falcate conidia. Falcate conidia germlings alone, however, were never observed to fuse. Plant infection experiments showed a positive correlation between germling fusions and efficient leaf infection by oval conidia. However, this correlation was not observed for infection by falcate conidia. Together, our findings reveal significant differences of two types of conidia derived from the same pathogenic fungus with distinct roles in pathogenesis.


Subject(s)
Colletotrichum/pathogenicity , Spores, Fungal/physiology , Cell Shape , Colletotrichum/physiology , Spores, Fungal/cytology , Zea mays/microbiology
9.
Mar Drugs ; 16(10)2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30241332

ABSTRACT

Chondroitin sulfate (CS) is a glycosaminoglycan actively researched for pharmaceutical, nutraceutical and tissue engineering applications. CS extracted from marine animals displays different features from common terrestrial sources, resulting in distinct properties, such as anti-viral and anti-metastatic. Therefore, exploration of undescribed marine species holds potential to expand the possibilities of currently-known CS. Accordingly, we have studied for the first time the production and characterization of CS from blackmouth catshark (Galeus melastomus), a shark species commonly discarded as by-catch. The process of CS purification consists of cartilage hydrolysis with alcalase, followed by two different chemical treatments and ending with membrane purification. All steps were optimized by response surface methodology. According to this, the best conditions for cartilage proteolysis were established at 52.9 °C and pH = 7.31. Subsequent purification by either alkaline treatment or hydroalcoholic alkaline precipitation yielded CS with purities of 81.2%, 82.3% and 97.4% respectively, after 30-kDa membrane separation. The molecular weight of CS obtained ranges 53⁻66 kDa, depending on the conditions. Sulfation profiles were similar for all materials, with dominant CS-C (GlcA-GalNAc6S) units (55%), followed by 23⁻24% of CS-A (GlcA-GalNAc4S), a substantial amount (15⁻16%) of CS-D (GlcA2S-GalNAc6S) and less than 7% of other disulfated and unsulfated disaccharides.


Subject(s)
Biological Products/chemistry , Cartilage/chemistry , Chondroitin Sulfates/isolation & purification , Sharks , Alkalies/chemistry , Animals , Biological Products/isolation & purification , Chondroitin Sulfates/chemistry , Hydrolysis , Molecular Weight , Subtilisins/chemistry
10.
Beilstein J Org Chem ; 13: 1430-1438, 2017.
Article in English | MEDLINE | ID: mdl-28781709

ABSTRACT

Two hitherto unknown fusaricidins were obtained from fermentation broths of three Paenibacillus strains. After structure elucidation based on tandem mass spectrometry and NMR spectroscopy, fusaricidin E was synthesized to confirm the structure and the suggested stereochemistry. The synthesis was based on a new strategy which includes an efficient access to the 15-guanidino-3-hydroxypentadecanoyl (GHPD) side chain from erucamide.

11.
PLoS One ; 12(8): e0183065, 2017.
Article in English | MEDLINE | ID: mdl-28829795

ABSTRACT

A forward genetics approach was applied in order to investigate the molecular basis of morphological transition in the wheat pathogenic fungus Zymoseptoria tritici. Z. tritici is a dimorphic plant pathogen displaying environmentally regulated morphogenetic transition between yeast-like and hyphal growth. Considering the infection mode of Z. tritici, the switching to hyphal growth is essential for pathogenicity allowing the fungus the host invasion through natural openings like stomata. We exploited a previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) to generate a mutant library by insertional mutagenesis including more than 10,000 random mutants. To identify genes involved in dimorphic switch, a plate-based screening system was established. With this approach eleven dimorphic switch deficient random mutants were recovered, ten of which exhibited a yeast-like mode of growth and one mutant predominantly growing filamentously, producing high amount of mycelium under different incubation conditions. Using genome walking approach previously established, the T-DNA integration sites were recovered and the disrupted genomic loci of corresponding mutants were identified and validated within reverse genetics approach. As prove of concept, two of the random mutants obtained were selected for further investigation using targeted gene inactivation. Both genes deduced were found to encode known factors, previously characterized in other fungi: Ssk1p being constituent of HOG pathway and Ade5,7p involved in de novo purine biosynthesis. The targeted mutant strains defective in these genes exhibit a drastically impaired virulence within infection assays on whole wheat plants. Moreover exploiting further physiological assays the predicted function for both gene products could be confirmed in concordance with conserved biological role of homologous proteins previously described in other fungal organisms.


Subject(s)
Ascomycota/physiology , Ascomycota/genetics , Ascomycota/pathogenicity , Fungal Proteins/genetics , Genes, Fungal , Virulence
12.
Mar Pollut Bull ; 108(1-2): 303-10, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27126182

ABSTRACT

Organic and inorganic pollutant levels were determined for the most discarded species from trawlers operating in Great Sole and Spanish coastal fishing grounds. Results for heavy metals indicated that Cd can reach values higher than legal limits for some species and tissues, while Hg and Pb concentrations are below established values. No significant variation was noticed with fishing grounds, but both season influences in the case of Pb and interspecies variation for Hg and Cd have been detected. Valorization recommendations could be therefore established according to the levels found in the different species.


Subject(s)
Environmental Monitoring/methods , Fishes , Metals, Heavy/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Animals , Atlantic Ocean , Cadmium/analysis , Fishes/metabolism , Mercury/analysis , Seasons , Ships/standards , Spain
13.
Waste Manag ; 46: 103-12, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26316101

ABSTRACT

Reuse and valorisation of fish by-products is a key process for marine resources conservation. Usually, fishmeal and oil processing factories collect the by-products generated by fishing port and industry processing activities, producing an economical benefit to both parts. In the same way, different added-value products can be recovered by the valorisation industries whereas fishing companies save the costs associated with the management of those wastes. However, it is important to estimate the advantages of valorisation processes not only in terms of economic income, but also considering the environmental impacts. This would help to know if the valorisation of a residue provokes higher impact than other waste management options, which means that its advantages are probably not enough for guarantying a sustainable waste reuse. To that purpose, there are several methodologies to evaluate the environmental impacts of processes, including those of waste management, providing different indicators which give information on relevant environmental aspects. In the current study, a comparative environmental assessment between a valorisation process (fishmeal and oil production) and different waste management scenarios (composting, incineration and landfilling) was developed. This comparison is a necessary step for the development and industrial implementation of these processes as the best alternative treatment for fish by-products. The obtained results showed that both valorisation process and waste management treatments presented similar impacts. However, a significant benefit can be achieved through valorisation of fish by-products. Additionally, the implications of the possible presence of pollutants were discussed.


Subject(s)
Conservation of Natural Resources , Fisheries , Industrial Waste/analysis , Waste Management/methods , Water Pollution, Chemical/analysis , Incineration , Refuse Disposal , Spain , Waste Disposal Facilities
14.
Fungal Genet Biol ; 57: 11-22, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23733043

ABSTRACT

Transcription factors play a critical regulatory role in development by binding DNA and initiating alterations in gene transcription. The transcript of the putative Magnaporthe oryzae transcription factor-encoding gene TRA1 accumulates during germination and this accumulation was previously found to depend on the transcription factor Con7p. In the current work tra1⁻ mutants were generated and these strains were found to exhibit a reduced attachment, germination, appressorium formation and virulence. Adhesion to artificial and plant surfaces was affected, and FITC-labelled concanavalin A, a lectin which inhibits attachment of Magnaporthe spores, showed a reduced affinity for mutant spore tip where it normally preferentially binds. We used microarray analysis to identify Tra1p-dependent genes from two different sources: aerial structures and conidia. Mutation of 11 Tra1p-dependent genes showed that the predicted transcription factor encoding gene TDG2 is required for normal adhesion and virulence, that the genes TDG7 and TDG4 are required for normal sporulation and that TDG6 is required for wild-type levels of spore adhesion.


Subject(s)
Fungal Proteins/genetics , Magnaporthe/genetics , Spores/genetics , Transcription Factors/genetics , Gene Expression Regulation, Fungal , Green Fluorescent Proteins , Magnaporthe/growth & development , Magnaporthe/pathogenicity , Mutation , Oryza/genetics , Oryza/growth & development , Oryza/microbiology , Spores/growth & development , Spores/pathogenicity , Spores, Fungal/genetics , Spores, Fungal/growth & development , Virulence
15.
Mar Pollut Bull ; 64(7): 1277-90, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22542692

ABSTRACT

Fish discards and by-catch issues are highly topical subjects that are permanently under a social focus. Two main approaches are being considered to address this discard problem: reducing the by-catch and increasing by-catch utilization. Interest in increased by-catch valorization may arise from a greater demand for fish products, such as the development of new markets for previously discarded species, the use of low-value specimens for aquaculture or the creation of value-added fish products for the food, pharmaceutical or cosmetic industries. However, contaminants present in fish discards may be transferred to their valorized products, leading to possible long-term bioaccumulation and subsequent adverse health effects. In this valorization framework, the aim is to promote responsible and sustainable management of marine resources. The pollutant levels in catches from European fisheries and the best available decontamination techniques for marine valorized discards/by-products are compiled and analyzed in this work.


Subject(s)
Fisheries/methods , Food Contamination/prevention & control , Waste Management/methods , Water Pollution/statistics & numerical data , Animals , Conservation of Natural Resources , Fisheries/statistics & numerical data , Food Contamination/statistics & numerical data , Humans , Metals, Heavy/analysis , Seafood/statistics & numerical data , Seawater/chemistry , Water Pollutants/analysis
16.
Plant Cell ; 21(10): 3379-96, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19880801

ABSTRACT

In filamentous fungi, Sfp-type 4'-phosphopantetheinyl transferases (PPTases) activate enzymes involved in primary (alpha-aminoadipate reductase [AAR]) and secondary (polyketide synthases and nonribosomal peptide synthetases) metabolism. We cloned the PPTase gene PPT1 of the maize anthracnose fungus Colletotrichum graminicola and generated PPTase-deficient mutants (Deltappt1). Deltappt1 strains were auxotrophic for Lys, unable to synthesize siderophores, hypersensitive to reactive oxygen species, and unable to synthesize polyketides (PKs). A differential analysis of secondary metabolites produced by wild-type and Deltappt1 strains led to the identification of six novel PKs. Infection-related morphogenesis was affected in Deltappt1 strains. Rarely formed appressoria of Deltappt1 strains were nonmelanized and ruptured on intact plant. The hyphae of Deltappt1 strains colonized wounded maize (Zea mays) leaves but failed to generate necrotic anthracnose disease symptoms and were defective in asexual sporulation. To analyze the pleiotropic pathogenicity phenotype, we generated AAR-deficient mutants (Deltaaar1) and employed a melanin-deficient mutant (M1.502). Results indicated that PPT1 activates enzymes required at defined stages of infection. Melanization is required for cell wall rigidity and appressorium function, and Lys supplied by the AAR1 pathway is essential for necrotrophic development. As PPTase-deficient mutants of Magnaporthe oryzea were also nonpathogenic, we conclude that PPTases represent a novel fungal pathogenicity factor.


Subject(s)
Bacterial Proteins/physiology , Colletotrichum/enzymology , Colletotrichum/pathogenicity , Fungal Proteins/physiology , Transferases (Other Substituted Phosphate Groups)/physiology , Virulence/physiology , Bacterial Proteins/genetics , Colletotrichum/genetics , Fungal Proteins/genetics , Magnaporthe/enzymology , Magnaporthe/genetics , Magnaporthe/pathogenicity , Microscopy, Fluorescence , Models, Biological , Molecular Sequence Data , Polymerase Chain Reaction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Transferases (Other Substituted Phosphate Groups)/genetics , Virulence/genetics
17.
Z Naturforsch C J Biosci ; 64(3-4): 244-50, 2009.
Article in English | MEDLINE | ID: mdl-19526720

ABSTRACT

Fatty acids are essential components of almost all biological membranes. Additionally, they are important in energy storage, as second messengers during signal transduction, and in post-translational protein modification. De novo synthesis of fatty acids is essential for almost all organisms, and entails the iterative elongation of the growing fatty acid chain through a set of reactions conserved in all kingdoms. During our work on the biosynthesis of secondary metabolites, a 450-kDa protein was detected by SDS-PAGE of enriched fractions from mycelial lysates from the basidiomycete Omphalotus olearius. Protein sequencing of this protein band revealed the presence of peptides with homology to both alpha and beta subunits of the ascomycete fatty acid synthase (FAS) family. The FAS encoding gene of O. olearius was sequenced. The positions of its predicted 21 introns were verified. The gene encodes a 3931 amino acids single protein, with an equivalent of the ascomycetous beta subunit at the N-terminus and the a subunit at the C-terminus. This is the first report on an FAS protein from a homobasidiomycete and also the first fungal FAS which is comprised of a single polypeptide.


Subject(s)
Basidiomycota/enzymology , Fatty Acid Synthases/metabolism , Amino Acid Sequence , Animals , Cryptococcus neoformans/enzymology , Fatty Acid Synthases/chemistry , Fatty Acid Synthases/genetics , Fatty Acid Synthases/isolation & purification , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Mammals , Molecular Sequence Data , Molecular Weight , Peptides/chemistry
18.
Fungal Genet Biol ; 46(4): 321-32, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19171198

ABSTRACT

The plant pathogenic fungus Magnaporthe grisea excretes siderophores of the coprogen-type for iron acquisition and uses ferricrocin for intracellular iron storage. In the present report we characterize mutants with defects in extracellular siderophore biosynthesis. Deletion of the M. grisea SSM2 gene, which encodes a non-ribosomal peptide synthetase, resulted in a loss of the production of all coprogens. The mutant strains had a reduced growth rate, produced fewer conidia and were more sensitive to oxidative stress. Ferricrocin production was not affected. Upon deletion of M. grisea OMO1, a gene predicted to encode an L-ornithine-N(5)-monooxygenase, no siderophores of any type were detected, the strain was aconidial, growth rate was reduced and sensitivity to oxidative stress was increased. Abundance of several proteins was affected in the mutants. The Deltassm2 and Deltaomo1 mutant phenotypes were complemented by supplementation of the medium with siderophores or reintroduction of the respective genes.


Subject(s)
Magnaporthe/physiology , Oxidative Stress , Siderophores/biosynthesis , Spores, Fungal/growth & development , Stress, Physiological , Fungal Proteins/genetics , Gene Deletion , Genetic Complementation Test , Magnaporthe/drug effects , Magnaporthe/genetics , Magnaporthe/growth & development , Mixed Function Oxygenases/genetics , Peptide Synthases/genetics
19.
Mol Plant Pathol ; 8(2): 163-72, 2007 Mar.
Article in English | MEDLINE | ID: mdl-20507488

ABSTRACT

SUMMARY Iron is an essential element for the growth of nearly all organisms. In order to overcome the problem of its low bioavailability, microorganisms (including fungi) secrete siderophores, high-affinity iron chelators. As the acquisition of iron is also a key step in infection processes, siderophores have been considered as potential virulence factors in several host-pathogen interactions. Most fungi produce siderophores of the hydroxamate-type, which are synthesized by non-ribosomal peptide synthetases (NRPSs). Magnaporthe grisea, the causal agent of rice blast disease, produces ferricrocin as intracellular storage siderophore and excretes coprogens. In the M. grisea genome we identified SSM1, an NRPS gene, and a gene encoding an l-ornithine N5-monooxygenase (OMO1) that is clustered with SSM1 and responsible for catalysing the first step in siderophore biosynthesis, the N(5) hydroxylation of ornithine. Disruption of SSM1 confirmed that the gene encodes ferricrocin synthetase. Pathogenicity of these mutants towards rice was reduced, suggesting a role of this siderophore in pathogenicity of M. grisea.

20.
Z Naturforsch C J Biosci ; 61(5-6): 461-4, 2006.
Article in English | MEDLINE | ID: mdl-16869509

ABSTRACT

An analysis of siderophores produced by Magnaporthe grisea revealed the presence of one intracellular storage siderophore, ferricrocin, and four coprogen derivatives secreted into the medium under iron depletion. Structural analysis showed that the compounds are coprogen, coprogen B, 2-N-methylcoprogen and 2-N-methylcoprogen B. Siderophore production under low and high iron conditions was quantified.


Subject(s)
Iron/metabolism , Magnaporthe/chemistry , Siderophores/metabolism , Gas Chromatography-Mass Spectrometry , Magnaporthe/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Siderophores/chemistry , Siderophores/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...