Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Pharmacol Sci ; 44(12): 934-948, 2023 12.
Article in English | MEDLINE | ID: mdl-37891017

ABSTRACT

The Notch pathway regulates a diverse array of cell fate decisions, making it an enticing target in cancer therapy and regenerative medicine. During the early stages of Notch drug development, off-target toxicity precluded the approval of Notch inhibitors for the treatment of cancer. However, recent advances in our understanding of Notch structure and signaling have led to the development of several innovative Notch-based biotechnologies. In addition to new classes of inhibitors, pharmacological Notch activators have been shown to enhance osteogenesis and various aspects of T cell function. Furthermore, the mechanosensitive negative regulatory region (NRR) of the Notch receptor has been converted into synthetic Notch (synNotch) receptors with fully customizable signaling circuits. We review emergent Notch-based compounds, biologics, and cell therapies while highlighting the challenges and opportunities they face on the path to clinical development.


Subject(s)
Neoplasms , Receptors, Notch , Humans , Receptors, Notch/metabolism , Receptors, Notch/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction/physiology , Biotechnology
2.
Nat Chem Biol ; 19(1): 9-17, 2023 01.
Article in English | MEDLINE | ID: mdl-36050494

ABSTRACT

The Notch pathway regulates cell fate decisions and is an emerging target for regenerative and cancer therapies. Recombinant Notch ligands are attractive candidates for modulating Notch signaling; however, their intrinsically low receptor-binding affinity restricts their utility in biomedical applications. To overcome this limitation, we evolved variants of the ligand Delta-like 4 with enhanced affinity and cross-reactivity. A consensus variant with maximized binding affinity, DeltaMAX, binds human and murine Notch receptors with 500- to 1,000-fold increased affinity compared with wild-type human Delta-like 4. DeltaMAX also potently activates Notch in plate-bound, bead-bound and cellular formats. When administered as a soluble decoy, DeltaMAX inhibits Notch in reporter and neuronal differentiation assays, highlighting its dual utility as an agonist or antagonist. Finally, we demonstrate that DeltaMAX stimulates increased proliferation and expression of effector mediators in T cells. Taken together, our data define DeltaMAX as a versatile tool for broad-spectrum activation or inhibition of Notch signaling.


Subject(s)
Adaptor Proteins, Signal Transducing , Intercellular Signaling Peptides and Proteins , Humans , Animals , Mice , Ligands , Adaptor Proteins, Signal Transducing/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Calcium-Binding Proteins/metabolism , Signal Transduction/physiology , Receptors, Notch/metabolism
3.
FASEB J ; 35(1): e21182, 2021 01.
Article in English | MEDLINE | ID: mdl-33205514

ABSTRACT

During the last decades intermediate filaments (IFs) have emerged as important regulators of cellular signaling events, ascribing IFs with functions beyond the structural support they provide. The organ and developmental stage-specific expression of IFs regulate cell differentiation within developing or remodeling tissues. Lack of IFs causes perturbed stem cell differentiation in vasculature, intestine, nervous system, and mammary gland, in transgenic mouse models. The aberrant cell fate decisions are caused by deregulation of different stem cell signaling pathways, such as Notch, Wnt, YAP/TAZ, and TGFß. Mutations in genes coding for IFs cause an array of different diseases, many related to stem cell dysfunction, but the molecular mechanisms remain unresolved. Here, we provide a comprehensive overview of how IFs interact with and regulate the activity, localization and function of different signaling proteins in stem cells, and how the assembly state and PTM profile of IFs may affect these processes. Identifying when, where and how IFs and cell signaling congregate, will expand our understanding of IF-linked stem cell dysfunction during development and disease.


Subject(s)
Cell Differentiation , Intermediate Filament Proteins/metabolism , Intermediate Filaments/metabolism , Mutation , Stem Cells/metabolism , Wnt Signaling Pathway , Animals , Humans , Intermediate Filament Proteins/genetics , Intermediate Filaments/genetics , Intermediate Filaments/pathology , Stem Cells/pathology
4.
Sci Rep ; 9(1): 12415, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31455807

ABSTRACT

The intermediate filament (IF) cytoskeleton has been proposed to regulate morphogenic processes by integrating the cell fate signaling machinery with mechanical cues. Signaling between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) through the Notch pathway regulates arterial remodeling in response to changes in blood flow. Here we show that the IF-protein vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic forces. Vimentin is important for Notch transactivation by ECs and vimentin knockout mice (VimKO) display disrupted VSMC differentiation and adverse remodeling in aortic explants and in vivo. Shear stress increases Jagged1 levels and Notch activation in a vimentin-dependent manner. Shear stress induces phosphorylation of vimentin at serine 38 and phosphorylated vimentin interacts with Jagged1 and increases Notch activation potential. Reduced Jagged1-Notch transactivation strength disrupts lateral signal induction through the arterial wall leading to adverse remodeling. Taken together we demonstrate that vimentin forms a central part of a mechanochemical transduction pathway that regulates multilayer communication and structural homeostasis of the arterial wall.


Subject(s)
Aorta/metabolism , Hemodynamics , Receptors, Notch/metabolism , Signal Transduction , Stress, Physiological , Vascular Remodeling , Vimentin/metabolism , Animals , Human Umbilical Vein Endothelial Cells , Humans , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Mice , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Receptors, Notch/genetics , Transcriptional Activation , Vimentin/genetics
5.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118507, 2019 12.
Article in English | MEDLINE | ID: mdl-31301363

ABSTRACT

The developmentally indispensable Notch pathway exhibits a high grade of pleiotropism in its biological output. Emerging evidence supports the notion of post-translational modifications (PTMs) as a modus operandi controlling dynamic fine-tuning of Notch activity. Although, the intricacy of Notch post-translational regulation, as well as how these modifications lead to multiples of divergent Notch phenotypes is still largely unknown, numerous studies show a correlation between the site of modification and the output. These include glycosylation of the extracellular domain of Notch modulating ligand binding, and phosphorylation of the PEST domain controlling half-life of the intracellular domain of Notch. Furthermore, several reports show that multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs. However, further investigation of the complex PTM crosstalk is required for a complete understanding of the PTM-mediated Notch switchboard. In this review, we aim to provide a consistent and up-to-date summary of the currently known PTMs acting on the Notch signaling pathway, their functions in different contexts, as well as explore their implications in physiology and disease. Furthermore, we give an overview of the present state of PTM research methodology, and allude to a future with PTM-targeted Notch therapeutics.


Subject(s)
Receptors, Notch/metabolism , Animals , Humans , Protein Processing, Post-Translational , Signal Transduction
6.
Cereb Cortex ; 29(10): 4050-4066, 2019 09 13.
Article in English | MEDLINE | ID: mdl-30605503

ABSTRACT

The intermediate filament (nanofilament) protein nestin is a marker of neural stem cells, but its role in neurogenesis, including adult neurogenesis, remains unclear. Here, we investigated the role of nestin in neurogenesis in adult nestin-deficient (Nes-/-) mice. We found that the proliferation of Nes-/- neural stem cells was not altered, but neurogenesis in the hippocampal dentate gyrus of Nes-/- mice was increased. Surprisingly, the proneurogenic effect of nestin deficiency was mediated by its function in the astrocyte niche. Through its role in Notch signaling from astrocytes to neural stem cells, nestin negatively regulates neuronal differentiation and survival; however, its expression in neural stem cells is not required for normal neurogenesis. In behavioral studies, nestin deficiency in mice did not affect associative learning but was associated with impaired long-term memory.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Nestin/metabolism , Neural Stem Cells/metabolism , Neurogenesis , Receptors, Notch/metabolism , Animals , Astrocytes/cytology , Cell Differentiation , Cell Proliferation , Coculture Techniques , Jagged-1 Protein/metabolism , Male , Memory, Long-Term/physiology , Mice, Inbred C57BL , Mice, Knockout , Nestin/genetics , Rats , Signal Transduction
7.
Proc Natl Acad Sci U S A ; 114(23): E4574-E4581, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28533359

ABSTRACT

Notch signaling is a key regulator of angiogenesis, in which sprouting is regulated by an equilibrium between inhibitory Dll4-Notch signaling and promoting Jagged-Notch signaling. Whereas Fringe proteins modify Notch receptors and strengthen their activation by Dll4 ligands, other mechanisms balancing Jagged and Dll4 signaling are yet to be described. The intermediate filament protein vimentin, which has been previously shown to affect vascular integrity and regenerative signaling, is here shown to regulate ligand-specific Notch signaling. Vimentin interacts with Jagged, impedes basal recycling endocytosis of ligands, but is required for efficient receptor ligand transendocytosis and Notch activation upon receptor binding. Analyses of Notch signal activation by using chimeric ligands with swapped intracellular domains (ICDs), demonstrated that the Jagged ICD binds to vimentin and contributes to signaling strength. Vimentin also suppresses expression of Fringe proteins, whereas depletion of vimentin enhances Fringe levels to promote Dll4 signaling. In line with these data, the vasculature in vimentin knockout (VimKO) embryos and placental tissue is underdeveloped with reduced branching. Disrupted angiogenesis in aortic rings from VimKO mice and in endothelial 3D sprouting assays can be rescued by reactivating Notch signaling by recombinant Jagged ligands. Taken together, we reveal a function of vimentin and demonstrate that vimentin regulates Notch ligand signaling activities during angiogenesis.


Subject(s)
Neovascularization, Physiologic , Receptors, Notch/metabolism , Vimentin/metabolism , Animals , Aorta/metabolism , Chick Embryo , Endocytosis , Human Umbilical Vein Endothelial Cells , Humans , In Vitro Techniques , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Ligands , Mice , Mice, 129 Strain , Mice, Knockout , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Transcriptional Activation , Vimentin/deficiency , Vimentin/genetics
8.
Small ; 12(12): 1578-92, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-26807551

ABSTRACT

Nanomedicine is gaining ground worldwide in therapy and diagnostics. Novel nanoscopic imaging probes serve as imaging tools for studying dynamic biological processes in vitro and in vivo. To allow detectability in the physiological environment, the nanostructure-based probes need to be either inherently detectable by biomedical imaging techniques, or serve as carriers for existing imaging agents. In this study, the potential of mesoporous silica nanoparticles carrying commercially available fluorochromes as self-regenerating cell labels for long-term cellular tracking is investigated. The particle surface is organically modified for enhanced cellular uptake, the fluorescence intensity of labeled cells is followed over time both in vitro and in vivo. The particles are not exocytosed and particles which escaped cells due to cell injury or death are degraded and no labeling of nontargeted cell populations are observed. The labeling efficiency is significantly improved as compared to that of quantum dots of similar emission wavelength. Labeled human breast cancer cells are xenotransplanted in nude mice, and the fluorescent cells can be detected in vivo for a period of 1 month. Moreover, ex vivo analysis reveals fluorescently labeled metastatic colonies in lymph node and rib, highlighting the capability of the developed probes for tracking of metastasis.


Subject(s)
Cell Tracking/methods , Fluorescent Dyes/chemistry , Optical Phenomena , Silicon Dioxide/chemistry , Animals , Cell Cycle , Cell Line, Tumor , Cell Movement , Cell Proliferation , Diagnostic Imaging , Exocytosis , Female , Flow Cytometry , Fluorescence , Humans , Mice, Nude , Nanoparticles/ultrastructure , Porosity , Quantum Dots/chemistry , Xenograft Model Antitumor Assays
9.
Cell Res ; 24(4): 433-50, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24662486

ABSTRACT

Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick central nervous system and in cultured myoblasts, Notch-stimulated cells were allowed to undergo differentiation. PKCζ phosphorylates membrane-tethered forms of Notch and regulates two distinct routing steps, depending on the Notch activation state. When Notch is activated, PKCζ promotes re-localization of Notch from late endosomes to the nucleus and enhances production of the Notch intracellular domain, which leads to increased Notch activity. In the non-activated state, PKCζ instead facilitates Notch receptor internalization, accompanied with increased ubiquitylation and interaction with the endosomal sorting protein Hrs. Collectively, these data identify PKCζ as a key regulator of Notch trafficking and demonstrate that distinct steps in intracellular routing are differentially modulated depending on Notch signaling status.


Subject(s)
Protein Kinase C/physiology , Receptor, Notch1/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Chick Embryo , HEK293 Cells , HeLa Cells , Humans , Mice , Molecular Sequence Data , Protein Transport , Receptor, Notch1/genetics , Sequence Homology, Amino Acid , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...