Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 11(1): e0316722, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36651758

ABSTRACT

Enteroviruses (EVs) have been associated with several human diseases. Due to their continuous emergence and divergence, EV species have generated more than 100 types and recombinant strains, increasing the public health threat caused by them. Hence, an efficient and universal cloning system for reverse genetics (RG) of highly divergent viruses is needed to understand the molecular mechanisms of viral pathology and evolution. In this study, we generated a versatile human EV whole-genome cDNA template by enhancing the template-switching method and designing universal primers capable of simultaneous cloning and rapid amplification of cDNA ends (RACE)-PCR of EVs. Moreover, by devising strategies to overcome limitations of previous cloning methods, we simplified significant cloning steps to be completed within a day. Of note, we successfully verified our efficient universal cloning system enabling RG of a broad range of human EVs, including EV-A (EV-A71), EV-B (CV-B5, ECHO6, and ECHO30), EV-C (CV-A24), and EV-D (EV-D68), with viral titers and phenotypes comparable to those of their wild types. This rapid and straightforward universal EV cloning strategy will help us elucidate molecular characteristics, pathogenesis, and applications of a broad range of EV serotypes for further development of genetic vaccines and delivery tools using various replication systems. IMPORTANCE Due to the broad spread, incidence, and genetic divergence of enteroviruses (EVs), it has been challenging to deal with this virus that causes severe human diseases, including aseptic meningitis, myocarditis, encephalitis, and poliomyelitis. Therefore, an efficient and universal cloning system for the reverse genetics of highly divergent EVs contributes to an understanding of the viral pathology and molecular mechanisms of evolution. We have simplified the important cloning steps, hereby enhancing the template-switching method and designing universal primers, which enable the important cloning steps to be completed in a day. We have also successfully demonstrated recovery of a broad range of human EVs, including EV-A to -D types, using this advanced universal cloning system. This rapid and robust universal EV cloning strategy will aid in elucidating the molecular characteristics, pathogenesis, and applications of a wide range of EVs for further development of genetic vaccines and antiviral screening using various replication systems.


Subject(s)
Enterovirus Infections , Enterovirus , Vaccines , Humans , DNA, Complementary/genetics , Reverse Genetics , Enterovirus/genetics , Enterovirus Infections/prevention & control , Enterovirus Infections/epidemiology , Antigens, Viral/genetics , Cloning, Molecular
2.
Virulence ; 13(1): 990-1004, 2022 12.
Article in English | MEDLINE | ID: mdl-36560870

ABSTRACT

Novel highly pathogenic avian influenza (HPAI) H5Nx viruses are predominantly circulating worldwide, with an increasing potential threat of an outbreak in humans. It remains largely unknown how the stably maintained HPAI H5N1 suddenly altered its neuraminidase (NA) to other NA subtypes, which resulted in the emergence and evolution of H5Nx viruses. Here, we found that a combination of four specific amino acid (AA) substitutions (S123P-T156A-D183N- S223 R) in the hemagglutinin (HA) protein consistently observed in the H5Nx markedly altered the NA preference of H5N1 viruses. These molecular changes in H5N1 impaired its fitness, particularly viral growth and the functional activities of the HA and NA proteins. Among the AA substitutions identified, the T156A substitution, which contributed to the NA shift, also dramatically altered the antigenicity of H5N1 viruses, suggesting an occurrence of antigenic drift triggered by selective pressure. Our study shows the importance of how HA and NA complement each other and that antigenic drift in HA can potentially cause a shift in the NA protein in influenza A virus evolution.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Humans , Hemagglutinins , Neuraminidase/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/genetics , Influenza A virus/metabolism , Phylogeny
3.
Antiviral Res ; 193: 105126, 2021 09.
Article in English | MEDLINE | ID: mdl-34217753

ABSTRACT

Baloxavir marboxil (BXM) treatment-emergent polymerase acid (PA) I38X amino acid substitution (AAS) in the resistant variants of influenza viruses raise concerns regarding their emergence and spread. This study investigated the impact of 1 or 5 mg/kg BXM and 25 mg/kg oseltamivir phosphate (OS) (single or combination therapy) on the occurrence of resistance-related substitutions during the sequential lung-to-lung passages of AH1N1)pdm09 virus in mice. Deep sequencing analysis revealed that 67% (n = 4/6) of the population treated with BXM single therapy (1 or 5 mg/kg) possessed the treatment-emergent PA-I38X AAS variants (I38T, I38S, and I38V). Notably, BXM-OS combination therapy impeded PA-I38X AAS emergence. Although the doses utilized in the mouse model may not be directly translated into the clinically equivalent doses of each drugs, these findings offer insights toward alternative therapies to mitigate the emergence of influenza antiviral resistance.


Subject(s)
Dibenzothiepins/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Morpholines/pharmacology , Orthomyxoviridae Infections/drug therapy , Oseltamivir/pharmacology , Pyridones/pharmacology , Triazines/pharmacology , Amino Acid Substitution , Animals , Antiviral Agents/pharmacology , Disease Models, Animal , Drug Resistance, Viral/drug effects , Mice , Orthomyxoviridae Infections/virology , Viral Load/drug effects
6.
Diagnostics (Basel) ; 10(10)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33007999

ABSTRACT

The threat posed by coronaviruses to human health has necessitated the development of a highly specific and sensitive viral detection method that could differentiate between the currently circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-related coronaviruses (SARSr-CoVs). In this study, we developed a peptide nucleic acid (PNA)-based real-time quantitative polymerase chain reaction (RT-qPCR) assay targeting the N gene to efficiently discriminate SARS-CoV-2 from other SARSr-CoVs in human clinical samples. Without compromising the sensitivity, this method significantly enhanced the specificity of SARS-CoV-2 detection by 100-fold as compared to conventional RT-qPCR. In addition, we designed an RT-qPCR method for the sensitive and universal detection of ORF3ab-E genes of SARSr-CoV with a limit of detection (LOD) of 3.3 RNA copies per microliter. Thus, the developed assay serves as a confirmative dual-target detection method. Our PNA-mediated dual-target RT-qPCR assay can detect clinical SARS-CoV-2 samples in the range of 18.10-35.19 Ct values with an 82.6-100% detection rate. Furthermore, our assay showed no cross-reactions with other coronaviruses such as human coronaviruses (229E, NL63, and OC43) and Middle East respiratory syndrome coronavirus, influenza viruses (Type B, H1N1, H3N2, HPAI H5Nx, and H7N9), and other respiratory disease-causing viruses (MPV, RSV A, RSV B, PIV, AdV, and HRV). We, thus, developed a PNA-based RT-qPCR assay that differentiates emerging pathogens such as SARS-CoV-2 from closely related viruses such as SARSr-CoV and allows diagnosis of infections related to already identified or new coronavirus strains.

7.
J Virol ; 95(1)2020 12 09.
Article in English | MEDLINE | ID: mdl-33055248

ABSTRACT

Laninamivir (LAN) is a long-acting neuraminidase (NA) inhibitor (NAI) with a similar binding profile in the influenza NA enzyme active site as those of other NAIs, oseltamivir (OS), zanamivir (ZAN), and peramivir, and may share common resistance markers with these NAIs. We screened viruses with NA substitutions previously found during OS and ZAN selection in avian influenza viruses (AIVs) of the N3 to N9 subtypes for LAN susceptibility. Of the 72 NA substitutions, 19 conferred resistance to LAN, which ranged from 11.2- to 549.8-fold-decreased inhibitory activity over that of their parental viruses. Ten NA substitutions reduced the susceptibility to all four NAIs, whereas the remaining 26 substitutions yielded susceptibility to one or more NAIs. To determine whether the in vitro susceptibility of multi-NAI-resistant AIVs is associated with in vivo susceptibility, we infected BALB/c mice with recombinant AIVs with R292K (ma81K-N3R292K) or Q136K (ma81K-N8Q136K) NA substitutions, which impart in vitro susceptibility only to LAN or OS, respectively. Both ma81K-N3R292K and ma81K-N8Q136K virus-infected mice exhibited reduced weight loss, mortality, and lung viral titers when treated with their susceptible NAIs, confirming the in vitro susceptibility of these substitutions. Together, LAN resistance profiling of AIVs of a range of NA subtypes improves the understanding of NAI resistance mechanisms. Furthermore, the association of in vitro and in vivo NAI susceptibility indicates that our models are useful tools for monitoring NAI susceptibility of AIVs.IMPORTANCE The chemical structures of neuraminidase inhibitors (NAIs) possess similarities, but slight differences can result in variable susceptibility of avian influenza viruses (AIVs) carrying resistance-associated NA substitutions. Therefore, comprehensive susceptibility profiling of these substitutions in AIVs is critical for understanding the mechanism of antiviral resistance. In this study, we profiled resistance to the anti-influenza drug laninamivir in AIVs with substitutions known to impart resistance to other NAIs. We found 10 substitutions that conferred resistance to all four NAIs tested. On the other hand, we found that the remaining 26 NA substitutions were susceptible to at least one or more NAIs and showed for a small selection that in vitro data predicted in vivo behavior. Therefore, our findings highlight the usefulness of screening resistance markers in NA enzyme inhibition assays and animal models of AIV infections.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Guanidines/pharmacology , Influenza A virus/drug effects , Neuraminidase/genetics , Pyrans/pharmacology , Sialic Acids/pharmacology , Animals , Birds , Drug Resistance, Multiple, Viral/genetics , Enzyme Inhibitors/pharmacology , Influenza A virus/enzymology , Influenza A virus/genetics , Influenza in Birds/virology , Mice , Mice, Inbred BALB C , Mutation , Neuraminidase/antagonists & inhibitors , Neuraminidase/classification , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology
8.
Emerg Microbes Infect ; 9(1): 998-1007, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32306853

ABSTRACT

The previous outbreaks of SARS-CoV and MERS-CoV have led researchers to study the role of diagnostics in impediment of further spread and transmission. With the recent emergence of the novel SARS-CoV-2, the availability of rapid, sensitive, and reliable diagnostic methods is essential for disease control. Hence, we have developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the specific detection of SARS-CoV-2. The primer sets for RT-LAMP assay were designed to target the nucleocapsid gene of the viral RNA, and displayed a detection limit of 102 RNA copies close to that of qRT-PCR. Notably, the assay has exhibited a rapid detection span of 30 min combined with the colorimetric visualization. This test can detect specifically viral RNAs of the SARS-CoV-2 with no cross-reactivity to related coronaviruses, such as HCoV-229E, HCoV-NL63, HCoV-OC43, and MERS-CoV as well as human infectious influenza viruses (type B, H1N1pdm, H3N2, H5N1, H5N6, H5N8, and H7N9), and other respiratory disease-causing viruses (RSVA, RSVB, ADV, PIV, MPV, and HRV). Furthermore, the developed RT-LAMP assay has been evaluated using specimens collected from COVID-19 patients that exhibited high agreement to the qRT-PCR. Our RT-LAMP assay is simple to perform, less expensive, time-efficient, and can be used in clinical laboratories for preliminary detection of SARS-CoV-2 in suspected patients. In addition to the high sensitivity and specificity, this isothermal amplification conjugated with a single-tube colorimetric detection method may contribute to the public health responses and disease control, especially in the areas with limited laboratory capacities.


Subject(s)
Coronavirus Infections/diagnosis , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Humans , Limit of Detection , Nucleic Acid Amplification Techniques/economics , Nucleic Acid Amplification Techniques/standards , Nucleocapsid Proteins/genetics , Pandemics , Phosphoproteins , Pneumonia, Viral/virology , SARS-CoV-2 , Time Factors
9.
BMC Infect Dis ; 19(1): 676, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31370782

ABSTRACT

BACKGROUND: In addition to seasonal influenza viruses recently circulating in humans, avian influenza viruses (AIVs) of H5N1, H5N6 and H7N9 subtypes have also emerged and demonstrated human infection abilities with high mortality rates. Although influenza viral infections are usually diagnosed using viral isolation and serological/molecular analyses, the cost, accessibility, and availability of these methods may limit their utility in various settings. The objective of this study was to develop and optimized a multiplex detection system for most influenza viruses currently infecting humans. METHODS: We developed and optimized a multiplex detection system for most influenza viruses currently infecting humans including two type B (both Victoria lineages and Yamagata lineages), H1N1, H3N2, H5N1, H5N6, and H7N9 using Reverse Transcriptional Loop-mediated Isothermal Amplification (RT-LAMP) technology coupled with a one-pot colorimetric visualization system to facilitate direct determination of results without additional steps. We also evaluated this multiplex RT-LAMP for clinical use using a total of 135 clinical and spiked samples (91 influenza viruses and 44 other human infectious viruses). RESULTS: We achieved rapid detection of seasonal influenza viruses (H1N1, H3N2, and Type B) and avian influenza viruses (H5N1, H5N6, H5N8 and H7N9) within an hour. The assay could detect influenza viruses with high sensitivity (i.e., from 100 to 0.1 viral genome copies), comparable to conventional RT-PCR-based approaches which would typically take several hours and require expensive equipment. This assay was capable of specifically detecting each influenza virus (Type B, H1N1, H3N2, H5N1, H5N6, H5N8 and H7N9) without cross-reactivity with other subtypes of AIVs or other human infectious viruses. Furthermore, 91 clinical and spiked samples confirmed by qRT-PCR were also detected by this multiplex RT-LAMP with 98.9% agreement. It was more sensitive than one-step RT-PCR approach (92.3%). CONCLUSIONS: Results of this study suggest that our multiplex RT-LAMP assay may provide a rapid, sensitive, cost-effective, and reliable diagnostic method for identifying recent influenza viruses infecting humans, especially in locations without access to large platforms or sophisticated equipment.


Subject(s)
Colorimetry/methods , Influenza A virus/genetics , Influenza, Human/virology , Nucleic Acid Amplification Techniques/methods , Cross Reactions , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza A virus/isolation & purification , Influenza A virus/pathogenicity , Reverse Transcription
10.
Sci Rep ; 9(1): 8318, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31165766

ABSTRACT

The reverse genetics (RG) system of influenza A viruses is well established. However, the conventional sequence-dependent method for cloning influenza genome segments is time-consuming and requires multiple processes (eg. enzyme digestion and ligation) and exhibits low cloning efficiency compared to the sequence-independent cloning method. In this study, we improved influenza genome cloning into the pHW2000 vector for an RG system by incorporating a sequence-independent circular polymerase extension cloning (CPEC) approach which requires only 2 steps (reverse transcription and one-pot CPEC-PCR) and takes about 4 hours before the transformation. The specifically designed viral gene and vector primers used for CPEC-PCR have improved cloning efficiency ranging from 63.6 to 100% based on the results of gene-specific colony PCR which was additionally confirmed by enzyme digestion. We successfully cloned all genes from broad subtypes of influenza A viruses (H1-H12, N1-N9) and rescued by the RG system. Our results demonstrate that this method-one-Pot cloning for influenza A virus-was efficient in terms of required time and cloning rate. In conclusion, the novel cloning method for influenza A virus will contribute to a significant reduction in the time required for genetic studies of emerging influenza viruses.


Subject(s)
Cloning, Molecular , Influenza A virus/genetics , Reverse Genetics/methods , Animals , DNA Primers/genetics , DNA, Complementary/genetics , Dogs , Genes, Viral , Genetic Vectors , HEK293 Cells , Humans , Madin Darby Canine Kidney Cells , Phenotype , Plasmids/genetics , Polymerase Chain Reaction
11.
Microorganisms ; 7(6)2019 May 29.
Article in English | MEDLINE | ID: mdl-31146461

ABSTRACT

Reassortment events among influenza viruses occur naturally and may lead to the development of new and different subtypes which often ignite the possibility of an influenza outbreak. Between 2008 and 2010, highly pathogenic avian influenza (HPAI) H5 of the N1 subtype from the A/goose/Guangdong/1/96-like (Gs/GD) lineage generated novel reassortants by introducing other neuraminidase (NA) subtypes reported to cause most outbreaks in poultry. With the extensive divergence of the H5 hemagglutinin (HA) sequences of documented viruses, the WHO/FAO/OIE H5 Evolutionary Working Group clustered these viruses into a systematic and unified nomenclature of clade 2.3.4.4 currently known as "H5Nx" viruses. The rapid emergence and circulation of these viruses, namely, H5N2, H5N3, H5N5, H5N6, H5N8, and the regenerated H5N1, are of great concern based on their pandemic potential. Knowing the evolution and emergence of these novel reassortants helps to better understand their complex nature. The eruption of reports of each H5Nx reassortant through time demonstrates that it could persist beyond its usual seasonal activity, intensifying the possibility of these emerging viruses' pandemic potential. This review paper provides an overview of the emergence of each novel HPAI H5Nx virus as well as its current epidemiological distribution.

12.
J Microbiol Biotechnol ; 28(11): 1928-1936, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30270605

ABSTRACT

Recently, human infections caused by severe fever with thrombocytopenia syndrome virus (SFTSV), which can lead to fatality, have dramatically increased in East Asia. With the unavailability of vaccines or antiviral drugs to prevent and/or treat SFTSV infection, early rapid diagnosis is critical for prevention and control of the disease. Here, we report the development of a simple, rapid and sensitive portable detection method for SFTSV infection applying reverse transcription-loop mediated isothermal amplification (RT-LAMP) combined with one-pot colorimetric visualization and electro-free reaction platform. This method utilizes a pocket warmer to facilitate diagnosis in a resource-limited setting. Specific primers were designed to target the highly-conserved region of L gene of SFTSV. The detection limit of the RT-LAMP assay was approximately 100 viral genome copies from three different SFTSV strains. This assay exhibited comparable sensitivity to qRT-PCR and 10-fold more sensitivity than conventional RT-PCR, with a rapid detection time of 30 to 60 minutes. The RT-LAMP assay using SFTSV clinical specimens has demonstrated a similar detection rate to qRT-PCR and a higher detection rate compared to conventional RT-PCR. Moreover, there was no observed cross-reactive amplification of other human infectious viruses including Japanese Encephalitis Virus (JEV), Dengue, Enterovirus, Zika, Influenza and Middle East Respiratory Syndrome Coronavirus (MERS-CoV). This highly sensitive, electro- and equipment-free rapid colorimetric visualization method is feasible for resource-limited SFTSV field diagnosis.


Subject(s)
Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques , Phlebotomus Fever/diagnosis , Phlebovirus/isolation & purification , Colorimetry , Genes, Viral/genetics , Hospitals, University , Humans , Limit of Detection , Phlebovirus/genetics , RNA, Viral/genetics , Republic of Korea , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...