Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38068648

ABSTRACT

Phytoremediation, an environmentally friendly and sustainable approach for addressing Cu-contaminated environments, remains underutilized in mine tailings. Arbuscular mycorrhizal fungi (AMF) play a vital role in reducing Cu levels in plants through various mechanisms, including glomalin stabilization, immobilization within fungal structures, and enhancing plant tolerance to oxidative stress. Yeasts also contribute to plant growth and metal tolerance by producing phytohormones, solubilizing phosphates, generating exopolysaccharides, and facilitating AMF colonization. This study aimed to assess the impact of AMF and yeast inoculation on the growth and antioxidant response of Oenothera picensis plants growing in Cu mine tailings amended with compost. Plants were either non-inoculated (NY) or inoculated with Meyerozyma guilliermondii (MG), Rhodotorula mucilaginosa (RM), or a combination of both (MIX). Plants were also inoculated with Claroideoglomus claroideum (CC), while others remained non-AMF inoculated (NM). The results indicated significantly higher shoot biomass in the MG-NM treatment, showing a 3.4-fold increase compared to the NY-NM treatment. The MG-CC treatment exhibited the most substantial increase in root biomass, reaching 5-fold that in the NY-NM treatment. Co-inoculation of AMF and yeast influenced antioxidant activity, particularly catalase and ascorbate peroxidase. Furthermore, AMF and yeast inoculation individually led to a 2-fold decrease in total phenols in the roots. Yeast inoculation notably reduced non-enzymatic antioxidant activity in the ABTS and CUPRAC assays. Both AMF and yeast inoculation promoted the production of photosynthetic pigments, further emphasizing their importance in phytoremediation programs for mine tailings.

2.
Chemosphere ; 321: 138144, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36804495

ABSTRACT

The use of antibiotics in the livestock sector has resulted in the entry of these drugs into the soil matrix through the disposal of manure as an organic amendment. To define the fate of these drugs, it is necessary to evaluate kinetic aspects regarding transport in the soil-solution. The aim of this paper is to evaluate the adsorption kinetic parameters of Ciprofloxacin (CIPRO) in Ultisol and Andisol soil which allows obtaining main kinetic parameters (pseudo-first and pseudo-second order models) and to establish the solute transport mechanism by applying kinetic models such as the Elovich equation, Intraparticle diffusion (IPD) and, the Two-site non-equilibrium models (TSNE). The adsorption kinetics of this fluoroquinolone (FQ), on both soils derived from volcanic ashes, is developed using electrochemical techniques for their determination. The experimental amount of CIPRO adsorbed over time (Qt) data best fit with the pseudo-second order kinetic models; R2 = 0.9855, Ɛ = 10.17% and R2 = 0.9959, Ɛ = 10.77% for Ultisol and Andisol, respectively; and where CIPRO adsorption was considered time dependent for both soils but the lower adsorption capacity in Ultisol; with 17.6 ± 2.8 µmol g-1; which could mean a greater risk in environmental. Subsequently, applying models to describe solute transport mechanisms showed differences in the CIPRO adsorption extent for the fast and slow phases. Adsorption isotherms were evaluated, where Ultisol occurs on heterogenous sites as multilayers and Andisol by monolayer with similar Qmax. Finally, the socio-economic impact of antibiotic usage is presented, giving the importance of antibiotics in the livestock sector and their effects on human health.


Subject(s)
Ciprofloxacin , Soil , Humans , Adsorption , Anti-Bacterial Agents , Socioeconomic Factors , Kinetics
3.
Environ Sci Pollut Res Int ; 28(43): 60913-60922, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34165756

ABSTRACT

This study assessed the capacity of leaf litters to adsorb copper ions applied as a copper-based pesticide. Leaf litters of two fruit tree species with different lignin/N ratios were examined to determine their protective role against the incorporation of Cu into soil. A leaf litter Cu-adsorption capacity assay and a degradation assay were performed using table grape (lignin/N = 2.35) and kiwi (lignin/N = 10.85) leaf litters. Table grape leaf litter had a significantly (p = 0.001) higher Cu-adsorption capacity (15,800 mg kg-1) than kiwi leaf litter (14,283 mg kg-1). Following leaf litter degradation, significant differences (p = 0.011) were observed in the release of Cu from Cu-enriched leaf litter into soil, showing that kiwi litter has a greater protective effect against the incorporation of Cu into soil, regardless of the amount of Cu applied. This protective role is reflected in a significantly higher (p = 0.015) Cu concentration in table grape soil (41.71 ± 2.14 mg kg-1) than in kiwi soil (35.87 ± 0.69 mg kg-1). Therefore, leaf litter with higher lignin/N ratio has greater protective role against copper incorporation into soil.


Subject(s)
Pesticides , Soil Pollutants , Copper/analysis , Plant Leaves/chemistry , Soil , Soil Pollutants/analysis
4.
Ecotoxicol Environ Saf ; 208: 111495, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33099139

ABSTRACT

Different techniques have been developed for the remediation of Cu contaminated soils, being the phytoremediation a sustainable and environmentally friendly strategy, but its use in mine tailings is scarce. Arbuscular mycorrhizal fungi (AMF) can decrease the Cu concentration in plants by favouring the stabilization of this metal through different mechanisms such as the production of glomalin, immobilization in the fungal wall of hyphae and spores, and the storage of Cu in vacuoles. Additionally, the use of organic amendments promotes the beneficial effects produced by AMF and improves plant growth. Based on the above, the aim of this study was to determine the effect of AMF inoculation and compost application at different doses on the growth of Oenothera picensis in a Cu mine tailing. One group of plants were inoculated with Claroideoglomus claroideum (CC) and other was non-inoculated (NM). Both CC and NM were grown for two month under greenhouse conditions in pots with the Cu mine tailing, which also had increasing compost doses (0%, 2.5%, 5%, and 10%). Results showed greater biomass production of O. picensis by CC up to 2-fold compared with NM. This effect was improved by the compost addition, especially at doses of 5% and 10%. Therefore, the increase of mycorrhizal and nutritional parameters in O. picensis, and the decreasing of Cu availability in the mine tailing, promoted the production of photosynthetic pigments together with the plant growth, which is of importance to accomplish phytoremediation programs in Cu mine tailings.


Subject(s)
Composting/methods , Copper/metabolism , Fungi/physiology , Oenothera/microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental , Biomass , Copper/analysis , Fungi/metabolism , Mining , Mycorrhizae/metabolism , Mycorrhizae/physiology , Oenothera/growth & development , Oenothera/metabolism , Soil/chemistry , Soil Pollutants/analysis
5.
J Environ Manage ; 260: 110137, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32090833

ABSTRACT

Metallic oxides and clay minerals have gained increasing interest as additives of composting due to their influence in greenhouse gas emissions reduction and their effectivity in the stabilization of carbon both in compost and soils, leading to a cleaner compost production and potentially C sequestrant amendments. In this study, wheat straw (WS) was co-composted with iron oxide and allophanic soil and their influence on WS composting and composition of the end-products was evaluated. WS compost and their humic like-substances (HS) fraction were characterized by chemical and spectroscopic analyzes. After 126 days of process, the elemental composition showed slight differences of the N content for compost and HS, where the C/N atomic ratio tended to decrease relative to the initial material (WS; ~130). This trend was more pronounced in the HS from co-composted treatments (<30). The addition of inorganic materials increased the total acidity and phenolic-OH group contents (~15 and 14 mEq g-1 respectively, iron oxide treatment) relative to the treatment without inorganic additives. Nevertheless, the FTIR and solid-state 13CNMR spectroscopy barely support the wet chemical analysis and revealed a similar final composition between all the studied compost treatments. These results suggest that the incorporation of these materials as compost additives had no major effect on the spectroscopic features of the end-products, however, critical changes of the properties such as the extractability, functionality and composition of HS were revealed by traditional methods. In conclusion, the supply of metal oxides and clays could impact the aerobic composting of WS favorizing the stabilization of certain C pools and adsorptive properties of the end-products, that is of importance in production of amendments suitable for being used in degraded and contaminated soils. Nevertheless, under the experimental conditions of our research C stabilization apparently depends of other mechanisms that still need to be elucidate.


Subject(s)
Composting , Carbon , Minerals , Soil , Triticum
6.
J Hazard Mater ; 385: 121520, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31784135

ABSTRACT

Antimicrobial compounds are found in a range of environments as pollutants. Here, we evaluated the influence of two common anions, NO3- and PO43-, on ciprofloxacin adsorption on humic acid/ferrihydrite composite (HA-DIG/Fh), synthetic ferrihydrite (Fh), and humic acid (HA-DIG) under controlled pH (7.0), ionic strength (0.1 M) and temperature (25 °C). All materials were characterized by isoelectric point (IEP), while the composite and the iron oxide were characterized by Mössbauer spectroscopy. Kinetic and isotherm adsorption studies were carried out using cyclic voltammetry (in KH2PO4) and square wave voltammetry (in KNO3). The application of kinetic models for both anions revealed Fh to fit to a pseudo second order model (R2 = 0.941); while HA-DIG (R2 = 0.950) and HA-DIG/Fh (R2 = 0.993) were fitted to pseudo first order models. The adsorption results showed a high dependency electrolyte, especially in Fh, where different shape curves (H-type in KNO3 and C-type in KH2PO4) and maximum experimental adsorbed amount Cm were observed. This finding is supported by the distinct IEP values and change in sign of surface charge between the two ions. Finally, results suggest that HA-DIG could be potentially used in environmental remediation to remove antibiotics from natural matrices, though the risk of antibiotic transportation increased with depth in the soil profile.


Subject(s)
Anti-Bacterial Agents/chemistry , Ciprofloxacin/chemistry , Ferric Compounds/chemistry , Humic Substances , Adsorption , Kinetics , Nitrates/chemistry , Phosphates/chemistry , Static Electricity , Surface Properties
7.
J Environ Manage ; 227: 117-123, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30172930

ABSTRACT

Surface Tension (ST) of water solutions of humic acids extracted from volcanic ash derived soils (soil humic acids, S-HA), were measured under controlled conditions of pH (13.0), temperature (25 °C) and ionic strength (NaOH 0.1M) to establish the Critical Micellar Concentration (CMC). All S-HA were characterized by elemental analysis, acid-base titration, Transmission Electronic Microscopy (TEM) micrographs, isoelectric point (IEP) and solid state 13C-NMR. After that, these humic acids were evaluated as potential biomaterials to be used in mineral flotation processes, where a series of experiments were conducted at different S-HA and molybdenite ratio (from 0.2 to 50 g ton-1) establishing the IEP of all resultant materials. The use of solid state 13C-NMR enabled the following sequence of intensity distribution areas of S-HA to be established: O/N Alkyl>Alkyl C>Aromatic C>Carboxyl. The experimental values of ST and the calculated CMC (ranging from 0.8 to 3.3 g L-1) revealed that for S-HA no relationship between the abundance groups and their behavior as surfactant materials was observed. In relation with IEP determined for all materials, the highest surface charge, which can be useful for flotation processes, was obtained with 0.2 g of S-HA per ton of molybdenite. Additionally, TEM studies confirm the formation of pseudoaggregates for all the S-HA considered. Finally, the S-HA could be considered as an alternative to chemical products and commercial humic acids materials in mineral flotation processes.


Subject(s)
Humic Substances , Soil/chemistry , Surface-Active Agents , Minerals , Organic Chemicals
8.
Environ Geochem Health ; 40(6): 2491-2509, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29876675

ABSTRACT

The frequent use of phosphorus (P) fertilisers accompanied by nitrogen and potassium sources may lead to a serious long-term environmental issue because of the presence of potentially hazardous trace metals (TM) in P fertilisers and unknown effects on the TM chemical fractions in agricultural soils. A 16-month-long column experiment was conducted to investigate the mobility and chemical forms of Cd, Cu, Cr, Ni, and Zn introduced into a Mollisol and an Andisol through surface incorporation (0-2 cm) of triple superphosphate (TSP) fertiliser. The effects of urea and potassium chloride (KCl) applications were investigated as well. After 15 cycles of 300-mm irrigation, TSP addition increased the 4 M HNO3 extractable TM concentration in the upper (0-5 cm) section of soils. Beyond this depth, metals showed no significant mobility, with minimal leaching losses (< 1.9%, 25-cm depth). The TM chemical forms in the 0-5 cm section were significantly (p < 0.01) affected by the soil type and fertilisers addition. Cadmium, Ni, and Zn were the elements which appeared in a larger proportion (up to 30%) in the most labile fraction (KNO3 extractable) in fertilised soils. The impact of urea depended on the nitrification-related changes in soil pH, while fertilisation with KCl tended to increase the KNO3 fraction of most metals probably due to K+ exchange reactions. Chromium remained minimally affected by the urea and KCl applications since this contaminant is strongly bound to the less labile solid phases. The low mobility of TM was governed mainly by their interaction with the solid phases rather than by their speciation at soil pH. The mass balance showed that the geochemical processes underwent in time by the P fertiliser increased the amount of TM extracted by the chemical fractionation scheme, therefore the reaction period of TSP with soil particles should be taken into account for evaluating TM availability. Long-term soil fertilisation could inadvertently contribute to an increased concentration and availability of these P fertilisers-born contaminants in the cultivated layer of acidic soils.


Subject(s)
Fertilizers/analysis , Metals, Heavy/analysis , Phosphorus/analysis , Soil Pollutants/analysis , Agriculture , Cadmium/analysis , Chemical Fractionation , Chromium/analysis , Environmental Monitoring/methods , Soil/chemistry , Trace Elements/analysis
9.
J AOAC Int ; 95(6): 1558-61, 2012.
Article in English | MEDLINE | ID: mdl-23451368

ABSTRACT

A method was developed for microplate-based oxygen radicals absorbance capacity (ORAC) using pyrogallol red (PGR) as probe (ORAC-PGR). The method was evaluated for linearity, precision, and accuracy. In addition, the antioxidant capacity of commercial beverages, such as wines, fruit juices, and iced teas, was measured. Linearity of the area under the curve (AUC) versus Trolox concentration plots was [AUC = (845 +/- 110) + (23 +/- 2) [Trolox, microM]; R = 0.9961, n = 19]. Analyses showed better precision and accuracy at the highest Trolox concentration (40 microM) with RSD and recovery (REC) values of 1.7 and 101.0%, respectively. The method also showed good linearity for red wine [AUC = (787 +/- 77) + (690 +/- 60) [red wine, microL/mL]; R = 0.9926, n = 17], precision and accuracy with RSD values from 1.4 to 8.3%, and REC values that ranged from 89.7 to 103.8%. Red wines showed higher ORAC-PGR values than white wines, while the ORAC-PGR index of fruit juices and iced teas presented a wide range of results, from 0.6 to 21.6 mM of Trolox equivalents. Product-to-product variability was also observed for juices of the same fruit, showing the differences between brands on the ORAC-PGR index.


Subject(s)
Antioxidants/chemistry , Pyrogallol/analogs & derivatives , Animals , Area Under Curve , Beverages/analysis , Chromans/chemistry , Fluorescein , Food Analysis , Free Radicals/analysis , Fruit/chemistry , Humans , Indicators and Reagents , Plants/chemistry , Pyrogallol/chemistry , Reactive Oxygen Species/analysis , Reference Standards , Reproducibility of Results , Solutions , Tea/chemistry , Wine/analysis
10.
J AOAC Int ; 94(5): 1562-6, 2011.
Article in English | MEDLINE | ID: mdl-22165021

ABSTRACT

The analytical parameters of the microplate-based oxygen radicals absorbance capacity (ORAC) method using pyrogallol red (PGR) as probe (ORAC-PGR) are presented. In addition, the antioxidant capacity of commercial beverages, such as wines, fruit juices, and iced teas, is estimated. A good linearity of the area under the curve (AUC) versus Trolox concentration plots was obtained [AUC = (845 +/- 110) + (23 +/- 2) [Trolox, microM], R = 0.9961, n = 19]. QC experiments showed better precision and accuracy at the highest Trolox concentration (40 microM) with RSD and REC (recuperation) values of 1.7 and 101.0%, respectively. When red wine was used as sample, the method also showed good linearity [AUC = (787 +/- 77) + (690 +/- 60) [red wine, microL/mL]; R = 0.9926, n = 17], precision and accuracy with RSD values from 1.4 to 8.3%, and REC values that ranged from 89.7 to 103.8%. Additivity assays using solutions containing gallic acid and Trolox (or red wine) showed an additive protection of PGR given by the samples. Red wines showed higher ORAC-PGR values than white wines, while the ORAC-PGR index of fruit juices and iced teas presented a great variability, ranging from 0.6 to 21.6 mM of Trolox equivalents. This variability was also observed for juices of the same fruit, showing the influence of the brand on the ORAC-PGR index. The ORAC-PGR methodology can be applied in a microplate reader with good linearity, precision, and accuracy.


Subject(s)
Antioxidants/chemistry , Pyrogallol/analogs & derivatives , Reactive Oxygen Species/chemistry , Area Under Curve , Chromans/chemistry , Gallic Acid/chemistry , Indicators and Reagents , Pyrogallol/chemistry , Quality Control , Reference Standards , Reproducibility of Results , Solutions , Wine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...