Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
HGG Adv ; 5(3): 100324, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956874

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes that complete the first step of protein translation: ligation of amino acids to cognate tRNAs. Genes encoding ARSs have been implicated in myriad dominant and recessive phenotypes, the latter often affecting multiple tissues but with frequent involvement of the central and peripheral nervous systems, liver, and lungs. Threonyl-tRNA synthetase (TARS1) encodes the enzyme that ligates threonine to tRNATHR in the cytoplasm. To date, TARS1 variants have been implicated in a recessive brittle hair phenotype. To better understand TARS1-related recessive phenotypes, we engineered three TARS1 missense variants at conserved residues and studied these variants in Saccharomyces cerevisiae and Caenorhabditis elegans models. This revealed two loss-of-function variants, including one hypomorphic allele (R433H). We next used R433H to study the effects of partial loss of TARS1 function in a compound heterozygous mouse model (R432H/null). This model presents with phenotypes reminiscent of patients with TARS1 variants and with distinct lung and skin defects. This study expands the potential clinical heterogeneity of TARS1-related recessive disease, which should guide future clinical and genetic evaluations of patient populations.

2.
bioRxiv ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38979321

ABSTRACT

Alanyl-tRNA synthetase 1 (AARS1) encodes the enzyme that ligates tRNA molecules to alanine in the cytoplasm, which is required for protein translation. Variants in AARS1 have been implicated in early-onset, multi-system recessive phenotypes and in later-onset dominant peripheral neuropathy; to date, no single variant has been associated with both dominant and recessive diseases raising questions about shared mechanisms between the two inheritance patterns. AARS1 variants associated with recessive disease are predicted to result in null or hypomorphic alleles and this has been demonstrated, in part, via yeast complementation assays. However, pathogenic alleles have not been assessed in a side-by-side manner to carefully scrutinize the strengths and limitations of this model system. To address this, we employed a humanized yeast model to evaluate the functional consequences of all AARS1 missense variants reported in recessive disease. The majority of variants showed variable loss-of-function effects, ranging from no growth to significantly reduced growth. These data deem yeast a reliable model to test the functional consequences of human AARS1 variants; however, our data indicate that this model is prone to false-negative results and is not informative for genotype-phenotype studies. We next tested missense variants associated with no growth for dominant-negative effects. Interestingly, K81T AARS1, a variant implicated in recessive disease, demonstrated loss-of-function and dominant-negative effects, indicating that certain AARS1 variants may be capable of causing both dominant and recessive disease phenotypes.

3.
J Peripher Nerv Syst ; 29(2): 275-278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769024

ABSTRACT

BACKGROUND AND AIMS: Pathogenic variants in the NARS1 gene, which encodes for the asparaginyl-tRNA synthetase1 (NARS1) enzyme, were associated with complex central and peripheral nervous system phenotypes. Recently, Charcot-Marie-Tooth (CMT) disease has been linked to heterozygous pathogenic variants in NARS1 in nine patients. Here, we report two brothers and their mother from a French family with distal hereditary motor neuropathy (dHMN) carrying a previously unreported NARS1 variant. METHODS: The NARS1 variant (c.1555G>C; p.(Gly519Arg)) was identified through whole-genome sequencing (WGS) performed on the family members. Clinical findings, nerve conduction studies (NCS), needle electromyography (EMG), and functional assays in yeast complementation assays are reported here. RESULTS: The family members showed symptoms of dHMN, including distal weakness and osteoarticular deformities. They also exhibited brisk reflexes suggestive of upper motor neuron involvement. All patients were able to walk independently at the last follow-up. NCS and EMG confirmed pure motor neuropathy. Functional assays in yeast confirmed a loss-of-function effect of the variant on NARS1 activity. INTERPRETATION: Our findings expand the clinical spectrum of NARS1-associated neuropathies, highlighting the association of NARS1 mutations with dHMN. The benign disease course observed in our patients suggests a slowly progressive phenotype. Further reports could contribute to a more comprehensive understanding of the spectrum of NARS1-associated neuropathies.


Subject(s)
Pedigree , Humans , Male , Female , Adult , France , Middle Aged , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Amino Acyl-tRNA Synthetases/genetics , Hereditary Sensory and Motor Neuropathy/genetics , Hereditary Sensory and Motor Neuropathy/physiopathology
4.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585737

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes that complete the first step of protein translation: ligation of amino acids to cognate tRNAs. Genes encoding ARSs have been implicated in myriad dominant and recessive phenotypes, the latter often affecting multiple tissues but with frequent involvement of the central and peripheral nervous system, liver, and lungs. Threonyl-tRNA synthetase (TARS1) encodes the enzyme that ligates threonine to tRNATHR in the cytoplasm. To date, TARS1 variants have been implicated in a recessive brittle hair phenotype. To better understand TARS1-related recessive phenotypes, we engineered three TARS1 missense mutations predicted to cause a loss-of-function effect and studied these variants in yeast and worm models. This revealed two loss-of-function mutations, including one hypomorphic allele (R433H). We next used R433H to study the effects of partial loss of TARS1 function in a compound heterozygous mouse model (R433H/null). This model presents with phenotypes reminiscent of patients with TARS1 variants and with distinct lung and skin defects. This study expands the potential clinical heterogeneity of TARS1-related recessive disease, which should guide future clinical and genetic evaluations of patient populations.

5.
Brain Commun ; 6(2): fcae070, 2024.
Article in English | MEDLINE | ID: mdl-38495304

ABSTRACT

Pathogenic variants in six aminoacyl-tRNA synthetase (ARS) genes are implicated in neurological disorders, most notably inherited peripheral neuropathies. ARSs are enzymes that charge tRNA molecules with cognate amino acids. Pathogenic variants in asparaginyl-tRNA synthetase (NARS1) cause a neurological phenotype combining developmental delay, ataxia and demyelinating peripheral neuropathy. NARS1 has not yet been linked to axonal Charcot-Marie-Tooth disease. Exome sequencing of patients with inherited peripheral neuropathies revealed three previously unreported heterozygous NARS1 variants in three families. Clinical and electrophysiological details were assessed. We further characterized all three variants in a yeast complementation model and used a knock-in mouse model to study variant p.Ser461Phe. All three variants (p.Met236del, p.Cys342Tyr and p.Ser461Phe) co-segregate with the sensorimotor axonal neuropathy phenotype. Yeast complementation assays show that none of the three NARS1 variants support wild-type yeast growth when tested in isolation (i.e. in the absence of a wild-type copy of NARS1), consistent with a loss-of-function effect. Similarly, the homozygous knock-in mouse model (p.Ser461Phe/Ser472Phe in mouse) also demonstrated loss-of-function characteristics. We present three previously unreported NARS1 variants segregating with a sensorimotor neuropathy phenotype in three families. Functional studies in yeast and mouse support variant pathogenicity. Thus, NARS1 is the seventh ARS implicated in dominant axonal Charcot-Marie-Tooth disease, further stressing that all dimeric ARSs should be evaluated for Charcot-Marie-Tooth disease.

6.
Hum Mol Genet ; 32(13): 2177-2191, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37010095

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate tRNA molecules to cognate amino acids. Heterozygosity for missense variants or small in-frame deletions in six ARS genes causes dominant axonal peripheral neuropathy. These pathogenic variants reduce enzyme activity without significantly decreasing protein levels and reside in genes encoding homo-dimeric enzymes. These observations raise the possibility that neuropathy-associated ARS variants exert a dominant-negative effect, reducing overall ARS activity below a threshold required for peripheral nerve function. To test such variants for dominant-negative properties, we developed a humanized yeast assay to co-express pathogenic human alanyl-tRNA synthetase (AARS1) mutations with wild-type human AARS1. We show that multiple loss-of-function AARS1 mutations impair yeast growth through an interaction with wild-type AARS1, but that reducing this interaction rescues yeast growth. This suggests that neuropathy-associated AARS1 variants exert a dominant-negative effect, which supports a common, loss-of-function mechanism for ARS-mediated dominant peripheral neuropathy.


Subject(s)
Alanine-tRNA Ligase , Amino Acyl-tRNA Synthetases , Peripheral Nervous System Diseases , Humans , Alanine-tRNA Ligase/genetics , Peripheral Nervous System Diseases/pathology , Mutation , Amino Acyl-tRNA Synthetases/genetics , Peripheral Nerves/metabolism
7.
Genes (Basel) ; 13(12)2022 12 09.
Article in English | MEDLINE | ID: mdl-36553587

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) are highly conserved essential enzymes that charge tRNA with cognate amino acids-the first step of protein synthesis. Of the 37 nuclear-encoded human ARS genes, 17 encode enzymes are exclusively targeted to the mitochondria (mt-ARSs). Mutations in nuclear mt-ARS genes are associated with rare, recessive human diseases with a broad range of clinical phenotypes. While the hypothesized disease mechanism is a loss-of-function effect, there is significant clinical heterogeneity among patients that have mutations in different mt-ARS genes and also among patients that have mutations in the same mt-ARS gene. This observation suggests that additional factors are involved in disease etiology. In this review, we present our current understanding of diseases caused by mutations in the genes encoding mt-ARSs and propose explanations for the observed clinical heterogeneity.


Subject(s)
Amino Acyl-tRNA Synthetases , Transfer RNA Aminoacylation , Humans , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Phenotype , RNA, Transfer/genetics , RNA, Transfer/metabolism
8.
Article in English | MEDLINE | ID: mdl-36307205

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes with a critical role in protein synthesis: charging tRNA molecules with cognate amino acids. Heterozygosity for variants in five genes (AARS1, GARS1, HARS1, WARS1, and YARS1) encoding cytoplasmic, dimeric ARSs have been associated with autosomal dominant neurological phenotypes, including axonal Charcot-Marie-Tooth disease (CMT). Missense variants in the catalytic domain of YARS1 were previously linked to dominant intermediate CMT type C (DI-CMTC). Here, we report a patient with a missense variant of unknown significance predicted to modify residue 308 in the anticodon binding domain of YARS1 (p.Asp308Tyr). Interestingly, p.Asp308Tyr is associated with proximal-predominant motor neuropathy, which has not been reported in patients with pathogenic YARS1 variants. We demonstrate that this allele causes a loss-of-function effect in yeast complementation assays when modeled in YARS1 and the yeast ortholog TYS1; structural modeling of this variant further supports a loss-of-function effect. Taken together, this study raises the possibility that certain YARS1 variants cause proximal-prominent motor neuropathy and indicates that patients with this phenotype should be screened for genetic lesions in YARS1.


Subject(s)
Amino Acyl-tRNA Synthetases , Charcot-Marie-Tooth Disease , Humans , Saccharomyces cerevisiae , Charcot-Marie-Tooth Disease/genetics , Mutation, Missense/genetics , Amino Acyl-tRNA Synthetases/genetics , Heterozygote , Mutation
9.
Hum Mutat ; 43(7): 869-876, 2022 07.
Article in English | MEDLINE | ID: mdl-35332613

ABSTRACT

Heterozygosity for missense variants and small in-frame deletions in GARS1 has been reported in patients with a range of genetic neuropathies including Charcot-Marie-Tooth disease type 2D (CMT2D), distal hereditary motor neuropathy type V (dHMN-V), and infantile spinal muscular atrophy (iSMA). We identified two unrelated patients who are each heterozygous for a previously unreported missense variant modifying amino-acid position 336 in the catalytic domain of GARS1. One patient was a 20-year-old woman with iSMA, and the second was a 41-year-old man with CMT2D. Functional studies using yeast complementation assays support a loss-of-function effect for both variants; however, this did not reveal variable effects that might explain the phenotypic differences. These cases expand the mutational spectrum of GARS1-related disorders and demonstrate phenotypic variability based on the specific substitution at a single residue.


Subject(s)
Charcot-Marie-Tooth Disease , Glycine-tRNA Ligase , Humans , Charcot-Marie-Tooth Disease/genetics , Codon , Glycine-tRNA Ligase/genetics , Mutation , Phenotype
10.
iScience ; 24(7): 102700, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34235408

ABSTRACT

The neuromuscular junction is a synapse critical for muscle strength and coordinated motor function. Unlike CNS injuries, motor neurons mount robust regenerative responses after peripheral nerve injuries. Conversely, motor neurons selectively degenerate in diseases such as amyotrophic lateral sclerosis (ALS). To assess how these insults affect motor neurons in vivo, we performed ribosomal profiling of mouse motor neurons. Motor neuron-specific transcripts were isolated from spinal cords following sciatic nerve crush, a model of acute injury and regeneration, and in the SOD1G93A ALS model. Of the 267 transcripts upregulated after nerve crush, 38% were also upregulated in SOD1G93A motor neurons. However, most upregulated genes in injured and ALS motor neurons were context specific. Some of the most significantly upregulated transcripts in both paradigms were chemokines such as Ccl2 and Ccl7, suggesting an important role for neuroimmune modulation. Collectively these data will aid in defining pro-regenerative and pro-degenerative mechanisms in motor neurons.

11.
RNA Biol ; 18(12): 2605-2616, 2021 12.
Article in English | MEDLINE | ID: mdl-34039240

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) are a conserved family of enzymes with an essential role in protein synthesis: ligating amino acids to cognate tRNA molecules for translation. In addition to their role in tRNA charging, aaRSs have acquired non-canonical functions, including post-transcriptional regulation of mRNA expression. Yet, the extent and mechanisms of these post-transcriptional functions are largely unknown. Herein, we performed a comprehensive transcriptome analysis to define the mRNAs that are associated with almost all aaRSs present in S. cerevisiae cytosol. Nineteen (out of twenty) isogenic strains of GFP-tagged cytosolic aaRSs were subjected to immunoprecipitation with anti-GFP beads along with an untagged control. mRNAs associated with each aaRS were then identified by RNA-seq. The extent of mRNA association varied significantly between aaRSs, from MetRS in which none appeared to be statistically significant, to PheRS that binds hundreds of different mRNAs. Interestingly, many target mRNAs are bound by multiple aaRSs, suggesting co-regulation by this family of enzymes. Gene Ontology analyses for aaRSs with a considerable number of target mRNAs discovered an enrichment for pathways of amino acid metabolism and of ribosome biosynthesis. Furthermore, sequence and structure motif analysis revealed for some aaRSs an enrichment for motifs that resemble the anticodon stem loop of cognate tRNAs. These data suggest that aaRSs coordinate mRNA expression in response to amino acid availability and may utilize RNA elements that mimic their canonical tRNA binding partners.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Cytosol/enzymology , Gene Expression Regulation, Fungal , RNA, Messenger/metabolism , RNA, Transfer/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acyl-tRNA Synthetases/genetics , RNA, Messenger/genetics , RNA, Transfer/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
12.
FEBS J ; 288(1): 91-94, 2021 01.
Article in English | MEDLINE | ID: mdl-32940403

ABSTRACT

The pathogenic mechanism of neuropathy-associated aminoacyl-tRNA synthetase (ARS) gene variants is poorly defined. Mullen et al. generate new models of pathogenic, dominant HARS1 mutations and show that they increase eIF2α phosphorylation and decrease protein translation in neurons. These results are consistent with a dominant-negative mechanism of ARS-mediated peripheral neuropathy. Comment on: https://doi.org/10.1111/febs.15449.


Subject(s)
Histidine-tRNA Ligase , Peripheral Nervous System Diseases , Animals , Mutation , Neuronal Outgrowth , Peripheral Nervous System Diseases/genetics , Protein Biosynthesis , Zebrafish
13.
BMC Genomics ; 21(1): 549, 2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32770939

ABSTRACT

BACKGROUND: Multicellular organisms adopt various strategies to tailor gene expression to cellular contexts including the employment of multiple promoters (and the associated transcription start sites (TSSs)) at a single locus that encodes distinct gene isoforms. Schwann cells-the myelinating cells of the peripheral nervous system (PNS)-exhibit a specialized gene expression profile directed by the transcription factor SOX10, which is essential for PNS myelination. SOX10 regulates promoter elements associated with unique TSSs and gene isoforms at several target loci, implicating SOX10-mediated, isoform-specific gene expression in Schwann cell function. Here, we report on genome-wide efforts to identify SOX10-regulated promoters and TSSs in Schwann cells to prioritize genes and isoforms for further study. RESULTS: We performed global TSS analyses and mined previously reported ChIP-seq datasets to assess the activity of SOX10-bound promoters in three models: (i) an adult mammalian nerve; (ii) differentiating primary Schwann cells, and (iii) cultured Schwann cells with ablated SOX10 function. We explored specific characteristics of SOX10-dependent TSSs, which provides confidence in defining them as SOX10 targets. Finally, we performed functional studies to validate our findings at four previously unreported SOX10 target loci: ARPC1A, CHN2, DDR1, and GAS7. These findings suggest roles for the associated SOX10-regulated gene products in PNS myelination. CONCLUSIONS: In sum, we provide comprehensive computational and functional assessments of SOX10-regulated TSS use in Schwann cells. The data presented in this study will stimulate functional studies on the specific mRNA and protein isoforms that SOX10 regulates, which will improve our understanding of myelination in the peripheral nerve.


Subject(s)
SOXE Transcription Factors , Schwann Cells , Animals , Gene Expression , Myelin Sheath/metabolism , Promoter Regions, Genetic , Protein Isoforms/genetics , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Schwann Cells/metabolism
14.
Hum Mutat ; 41(7): 1232-1237, 2020 07.
Article in English | MEDLINE | ID: mdl-32333447

ABSTRACT

Mutations in histidyl-tRNA synthetase (HARS1), an enzyme that charges transfer RNA with the amino acid histidine in the cytoplasm, have only been associated to date with autosomal recessive Usher syndrome type III and autosomal dominant Charcot-Marie-Tooth disease type 2W. Using massive parallel sequencing, we identified bi-allelic HARS1 variants in a child (c.616G>T, p.Asp206Tyr and c.730delG, p.Val244Cysfs*6) and in two sisters (c.1393A>C, p.Ile465Leu and c.910_912dupTTG, p.Leu305dup), all characterized by a multisystem ataxic syndrome. All mutations are rare, segregate with the disease, and are predicted to have a significant effect on protein function. Functional studies helped to substantiate their disease-related roles. Indeed, yeast complementation assays showing that one out of two mutations in each patient is loss-of-function, and the reduction of messenger RNA and protein levels and enzymatic activity in patient's skin-derived fibroblasts, together support the pathogenicity of the identified HARS1 variants in the patient phenotypes. Thus, our efforts expand the allelic and clinical spectrum of HARS1-related disease.


Subject(s)
Ataxia/genetics , Histidine-tRNA Ligase/genetics , Adult , Alleles , Child , Female , Humans , Male , Mutation, Missense
15.
Am J Med Genet A ; 182(5): 1167-1176, 2020 05.
Article in English | MEDLINE | ID: mdl-32181591

ABSTRACT

The majority of patients with spinal muscular atrophy (SMA) identified to date harbor a biallelic exonic deletion of SMN1. However, there have been reports of SMA-like disorders that are independent of SMN1, including those due to pathogenic variants in the glycyl-tRNA synthetase gene (GARS1). We report three unrelated patients with de novo variants in GARS1 that are associated with infantile-onset SMA (iSMA). Patients were ascertained during inpatient hospital evaluations for complications of neuropathy. Evaluations were completed as indicated for clinical care and management and informed consent for publication was obtained. One newly identified, disease-associated GARS1 variant, identified in two out of three patients, was analyzed by functional studies in yeast complementation assays. Genomic analyses by exome and/or gene panel and SMN1 copy number analysis of three patients identified two previously undescribed de novo missense variants in GARS1 and excluded SMN1 as the causative gene. Functional studies in yeast revealed that one of the de novo GARS1 variants results in a loss-of-function effect, consistent with other pathogenic GARS1 alleles. In sum, the patients' clinical presentation, assessments of previously identified GARS1 variants and functional assays in yeast suggest that the GARS1 variants described here cause iSMA. GARS1 variants have been previously associated with Charcot-Marie-Tooth disease (CMT2D) and distal SMA type V (dSMAV). Our findings expand the allelic heterogeneity of GARS-associated disease and support that severe early-onset SMA can be caused by variants in this gene. Distinguishing the SMA phenotype caused by SMN1 variants from that due to pathogenic variants in other genes such as GARS1 significantly alters approaches to treatment.


Subject(s)
Genetic Predisposition to Disease , Glycine-tRNA Ligase/genetics , Spinal Muscular Atrophies of Childhood/genetics , Survival of Motor Neuron 1 Protein/genetics , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/physiopathology , Mutation, Missense/genetics , Phenotype , Spinal Muscular Atrophies of Childhood/diagnostic imaging , Spinal Muscular Atrophies of Childhood/physiopathology
16.
Trends Genet ; 36(2): 105-117, 2020 02.
Article in English | MEDLINE | ID: mdl-31839378

ABSTRACT

Aminoacyl-tRNA synthetases (ARS) are ubiquitously expressed, essential enzymes that charge tRNA with cognate amino acids. Variants in genes encoding ARS enzymes lead to myriad human inherited diseases. First, missense alleles cause dominant peripheral neuropathy. Second, missense, nonsense, and frameshift alleles cause recessive multisystem disorders that differentially affect tissues depending on which ARS is mutated. A preponderance of evidence has shown that both phenotypic classes are associated with loss-of-function alleles, suggesting that tRNA charging plays a central role in disease pathogenesis. However, it is currently unclear how perturbation in the function of these ubiquitously expressed enzymes leads to tissue-specific or tissue-predominant phenotypes. Here, we review our current understanding of ARS-associated disease phenotypes and discuss potential explanations for the observed tissue specificity.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Genetic Predisposition to Disease , Peripheral Nervous System Diseases/genetics , RNA, Transfer/genetics , Alleles , Amino Acids/genetics , Humans , Mutation/genetics , Peripheral Nervous System Diseases/pathology , Phenotype , Transfer RNA Aminoacylation/genetics
17.
Cerebellum ; 19(1): 154-160, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31705293

ABSTRACT

Mutations in the mitochondrial alanyl-tRNA synthetase gene, AARS2, have been reported to cause leukoencephalopathy associated with early ovarian failure, a clinical presentation described as "ovarioleukodystrophy." We present a sibling pair: one with cerebellar ataxia and one with vision loss and cognitive impairment in addition to ataxia. Neither shows evidence of leukoencephalopathy on MRI imaging. Exome sequencing revealed that both siblings are compound heterozygous for AARS2 variants (p.Phe131del and p.Ile328Met). Yeast complementation assays indicate that p.Phe131del AARS2 dramatically impairs gene function and that p.Ile328Met AARS2 is a hypomorphic allele. This work expands the phenotypic spectrum of AARS2-associated disease to include ataxia without leukoencephalopathy.


Subject(s)
Alanine-tRNA Ligase/genetics , Ataxia/diagnostic imaging , Ataxia/genetics , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/genetics , Adult , Amino Acid Sequence , Female , Humans , Male , Pedigree , Siblings
18.
Sci Rep ; 9(1): 19336, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852952

ABSTRACT

EGR2 (early growth response 2) is a crucial transcription factor for the myelination of the peripheral nervous system. Mutations in EGR2 are reported to cause a heterogenous spectrum of peripheral neuropathy with wide variation in both severity and age of onset, including demyelinating and axonal forms of Charcot-Marie Tooth (CMT) neuropathy, Dejerine-Sottas neuropathy (DSN/CMT3), and congenital hypomyelinating neuropathy (CHN/CMT4E). Here we report a sporadic de novo EGR2 variant, c.1232A > G (NM_000399.5), causing a missense p.Asp411Gly substitution and discovered through whole-exome sequencing (WES) of the proband. The resultant phenotype is severe demyelinating DSN with onset at two years of age, confirmed through nerve biopsy and electrophysiological examination. In silico analyses showed that the Asp411 residue is evolutionarily conserved, and the p.Asp411Gly variant was predicted to be deleterious by multiple in silico analyses. A luciferase-based reporter assay confirmed the reduced ability of p.Asp411Gly EGR2 to activate a PMP22 (peripheral myelin protein 22) enhancer element compared to wild-type EGR2. This study adds further support to the heterogeneity of EGR2-related peripheral neuropathies and provides strong functional evidence for the pathogenicity of the p.Asp411Gly EGR2 variant.


Subject(s)
Early Growth Response Protein 2/genetics , Genetic Predisposition to Disease , Hereditary Sensory and Motor Neuropathy/genetics , Mutation/genetics , Adolescent , Adult , Age of Onset , Amino Acid Sequence , Base Sequence , Child , Child, Preschool , Computer Simulation , Early Growth Response Protein 2/chemistry , Female , Hereditary Sensory and Motor Neuropathy/diagnostic imaging , Hereditary Sensory and Motor Neuropathy/pathology , Hereditary Sensory and Motor Neuropathy/physiopathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Conduction , Pedigree , Protein Domains , Schwann Cells/metabolism , Transcription, Genetic , Transcriptional Activation/genetics , Exome Sequencing
19.
J Peripher Nerv Syst ; 24(4): 320-323, 2019 12.
Article in English | MEDLINE | ID: mdl-31628756

ABSTRACT

We found a p.Gly327Arg mutation in GARS in two unrelated women, both of whom had a similar phenotype - motor weakness that began in late childhood, distal weakness in the arms and legs, a motor greater than sensory neuropathy with slowing of motor and not sensory conduction velocities. A de novo mutation was proven in one patient and suspected in the other. The p.Gly327Arg GARS variant did not support yeast growth in a complementation assay, showing that this variant severely impairs protein function. Thus, the p.Gly327Arg GARS mutation causes a distal motor neuropathy.


Subject(s)
Glycine-tRNA Ligase/genetics , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/physiopathology , Adolescent , Adult , Female , Humans , Mutation , Young Adult
20.
J Clin Invest ; 129(12): 5568-5583, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31557132

ABSTRACT

Gene therapy approaches are being deployed to treat recessive genetic disorders by restoring the expression of mutated genes. However, the feasibility of these approaches for dominantly inherited diseases - where treatment may require reduction in the expression of a toxic mutant protein resulting from a gain-of-function allele - is unclear. Here we show the efficacy of allele-specific RNAi as a potential therapy for Charcot-Marie-Tooth disease type 2D (CMT2D), caused by dominant mutations in glycyl-tRNA synthetase (GARS). A de novo mutation in GARS was identified in a patient with a severe peripheral neuropathy, and a mouse model precisely recreating the mutation was produced. These mice developed a neuropathy by 3-4 weeks of age, validating the pathogenicity of the mutation. RNAi sequences targeting mutant GARS mRNA, but not wild-type, were optimized and then packaged into AAV9 for in vivo delivery. This almost completely prevented the neuropathy in mice treated at birth. Delaying treatment until after disease onset showed modest benefit, though this effect decreased the longer treatment was delayed. These outcomes were reproduced in a second mouse model of CMT2D using a vector specifically targeting that allele. The effects were dose dependent, and persisted for at least 1 year. Our findings demonstrate the feasibility of AAV9-mediated allele-specific knockdown and provide proof of concept for gene therapy approaches for dominant neuromuscular diseases.


Subject(s)
Charcot-Marie-Tooth Disease/therapy , Genetic Therapy , Glycine-tRNA Ligase/genetics , RNA Interference , Alleles , Animals , Disease Models, Animal , HEK293 Cells , Humans , Mice , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...