Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 922: 171284, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38432389

ABSTRACT

Humic thermokarst lakes of permafrost peatlands in Western Siberia Lowland (WSL) are major environmental controllers of carbon and nutrient storage in inland waters and greenhouse gases emissions to the atmosphere in the subarctic. In contrast to sizable former research devoted to hydrochemical and hydrobiological (phytoplankton) composition, zooplankton communities of these thermokarst lakes and thaw ponds remain poorly understood, especially along the latitudinal gradient, which is a perfect predictor of permafrost zones. To fill this gap, 69 thermokarst lakes of the WSL were sampled using unprecedented spatial coverage, from continuous to sporadic permafrost zone, in order to assess zooplankton (Cladocera, Copepoda, Rotifera) diversity and abundance across three main open water physiological seasons (spring, summer and autumn). We aimed at assessing the relationship of environmental factors (water column hydrochemistry, nutrients, and phytoplankton parameters) with the abundance and diversity of zooplankton. A total of 74 zooplankton species and taxa were detected, with an average eight taxa per lake/pond. Species richness increased towards the north and reached the maximum in the continuous permafrost zone with 13 species found in this zone only. In contrast, the number of species per waterbody decreased towards the north, which was mainly associated with a decrease in the number of cladocerans. Abundance and diversity of specific zooplankton groups strongly varied across the seasons and permafrost zones. Among the main environmental controllers, Redundancy Analysis revealed that water temperature, lake area, depth, pH, Dissolved Inorganic and Organic Carbon and CO2 concentrations were closely related to zooplankton abundance. Cladocerans were positively related to water temperature during all seasons. Copepods were positively related to depth and lake water pH in all seasons. Rotifers were related to different factors in each season, but were most strongly associated with DOC, depth, CH4, phytoplankton and cladoceran abundance. Under climate warming scenario, considering water temperature increase and permafrost boundary shift northward, one can expect an increase in the diversity and abundance of cladocerans towards the north which can lead to partial disappearance of copepods, especially rare calanoid species.


Subject(s)
Cladocera , Copepoda , Permafrost , Rotifera , Animals , Seasons , Siberia , Zooplankton/physiology , Lakes/chemistry , Rotifera/physiology , Phytoplankton/physiology , Copepoda/physiology , Carbon , Water
2.
Sci Rep ; 14(1): 352, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172530

ABSTRACT

The Colorado potato beetle is one of the most devastating potato pests in the world. However, its viral pathogens, which might have potential in pest control, have remained unexplored. With high-throughput sequencing of Colorado potato beetle samples derived from prepupal larvae which died from an unknown infection, we have identified two previously unknown RNA viruses and assembled their nearly complete genome sequences. The subsequent genetic and phylogenetic analysis demonstrated that the viruses, tentatively named Leptinotarsa iflavirus 1 and Leptinotarsa solinvi-like virus 1, are the novel representatives of the Iflaviridae and Solinviviridae families, respectively. To the best of our knowledge, these are the first sequencing-confirmed insect viruses derived from Colorado potato beetle samples. We propose that Leptinotarsa iflavirus 1 may be associated with a lethal disease in the Colorado potato beetle.


Subject(s)
Coleoptera , Insect Viruses , Solanum tuberosum , Humans , Animals , Coleoptera/genetics , Solanum tuberosum/genetics , Phylogeny , Larva/genetics
3.
Article in English | MEDLINE | ID: mdl-37303712

ABSTRACT

Background: Cardiovascular disease had a global prevalence of 523 million cases and 18.6 million deaths in 2019. The current standard for diagnosing coronary artery disease (CAD) is coronary angiography either by invasive catheterization (ICA) or computed tomography (CTA). Prior studies employed single-molecule, amplification-independent RNA sequencing of whole blood to identify an RNA signature in patients with angiographically confirmed CAD. The present studies employed Illumina RNAseq and network co-expression analysis to identify systematic changes underlying CAD. Methods: Whole blood RNA was depleted of ribosomal RNA (rRNA) and analyzed by Illumina total RNA sequencing (RNAseq) to identify transcripts associated with CAD in 177 patients presenting for elective invasive coronary catheterization. The resulting transcript counts were compared between groups to identify differentially expressed genes (DEGs) and to identify patterns of changes through whole genome co-expression network analysis (WGCNA). Results: The correlation between Illumina amplified RNAseq and the prior SeqLL unamplified RNAseq was quite strong (r = 0.87), but there was only 9 % overlap in the DEGs identified. Consistent with the prior RNAseq, the majority (93 %) of DEGs were down-regulated ~1.7-fold in patients with moderate to severe CAD (>20 % stenosis). DEGs were predominantly related to T cells, consistent with known reductions in Tregs in CAD. Network analysis did not identify pre-existing modules with a strong association with CAD, but patterns of T cell dysregulation were evident. DEGs were enriched for transcripts associated with ciliary and synaptic transcripts, consistent with changes in the immune synapse of developing T cells. Conclusions: These studies confirm and extend a novel mRNA signature of a Treg-like defect in CAD. The pattern of changes is consistent with stress-related changes in the maturation of T and Treg cells, possibly due to changes in the immune synapse.

4.
Viruses ; 15(2)2023 01 30.
Article in English | MEDLINE | ID: mdl-36851611

ABSTRACT

The Colorado potato beetle (CPB) is one of the most serious insect pests due to its high ecological plasticity and ability to rapidly develop resistance to insecticides. The use of biological insecticides based on viruses is a promising approach to control insect pests, but the information on viruses which infect leaf feeding beetles is scarce. We performed a metagenomic analysis of 297 CPB genomic and transcriptomic samples from the public National Center for Biotechnology Information Sequence Read Archive (NCBI SRA) database. The reads that were not aligned to the reference genome were assembled with metaSPAdes, and 13314 selected contigs were analyzed with BLAST tools. The contigs and non-aligned reads were also analyzed with Kraken2 software. A total of 3137 virus-positive contigs were attributed to different viruses belonging to 6 types, 17 orders, and 32 families, matching over 97 viral species. The annotated sequences can be divided into several groups: those that are homologous to genetic sequences of insect viruses (Adintoviridae, Ascoviridae, Baculoviridae, Dicistroviridae, Chuviridae, Hytrosaviridae, Iflaviridae, Iridoviridae, Nimaviridae, Nudiviridae, Phasmaviridae, Picornaviridae, Polydnaviriformidae, Xinmoviridae etc.), plant viruses (Betaflexiviridae, Bromoviridae, Kitaviridae, Potyviridae), and endogenous retroviral elements (Retroviridae, Metaviridae). Additionally, the full-length genomes and near-full length genome sequences of several viruses were assembled. We also found sequences belonging to Bracoviriform viruses and, for the first time, experimentally validated the presence of bracoviral genetic fragments in the CPB genome. Our work represents the first attempt to discover the viral genetic material in CPB samples, and we hope that further studies will help to identify new viruses to extend the arsenal of biopesticides against CPB.


Subject(s)
Coleoptera , Dicistroviridae , Insecticides , Solanum tuberosum , Animals , Metagenome
5.
J Biomol Struct Dyn ; 40(7): 3196-3212, 2022 04.
Article in English | MEDLINE | ID: mdl-33222632

ABSTRACT

The polyepitope strategy is promising approach for successfully creating a broadly protective flu vaccine, which targets T-lymphocytes (both CD4+ and CD8+) to recognise the most conserved epitopes of viral proteins. In this study, we employed a computer-aided approach to develop several artificial antigens potentially capable of evoking immune responses to different virus subtypes. These antigens included conservative T-cell epitopes of different influenza A virus proteins. To design epitope-based antigens we used experimentally verified information regarding influenza virus T-cell epitopes from the Immune Epitope Database (IEDB) (http://www.iedb.org). We constructed two "human" and two "murine" variants of polyepitope antigens. Amino acid sequences of target polyepitope antigens were designed using our original TEpredict/PolyCTLDesigner software. Immunogenic and protective features of DNA constructs encoding "murine" target T-cell immunogens were studied in BALB/c mice. We showed that mice groups immunised with a combination of computer-generated "murine" DNA immunogens had a 37.5% survival rate after receiving a lethal dose of either A/California/4/2009 (H1N1) virus or A/Aichi/2/68 (H3N2) virus, while immunisation with live flu H1N1 and H3N2 vaccine strains provided protection against homologous viruses and failed to protect against heterologous viruses. These results demonstrate that mechanisms of cross-protective immunity may be associated with the stimulation of specific T-cell responses. This study demonstrates that our computer-aided approach may be successfully used for rational designing artificial polyepitope antigens capable of inducing virus-specific T-lymphocyte responses and providing partial protection against two different influenza virus subtypes.Communicated by Ramaswamy H. Sarma.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Animals , Antigens, Viral/genetics , Epitopes, T-Lymphocyte , Humans , Influenza A Virus, H3N2 Subtype , Mice , Mice, Inbred BALB C , T-Lymphocytes
6.
BMC Genomics ; 22(1): 854, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34823472

ABSTRACT

BACKGROUND: Despite proven therapeutic effects in inflammatory conditions, the specific mechanisms of phytochemical therapies are not well understood. The transcriptome effects of Traumeel (Tr14), a multicomponent natural product, and diclofenac, a non-selective cyclooxygenase (COX) inhibitor, were compared in a mouse cutaneous wound healing model to identify both known and novel pathways for the anti-inflammatory effect of plant-derived natural products. METHODS: Skin samples from abraded mice were analyzed by single-molecule, amplification-free RNAseq transcript profiling at 7 points between 12 and 192 h after injury. Immediately after injury, the wounds were treated with either diclofenac, Tr14, or placebo control (n = 7 per group/time). RNAseq levels were compared between treatment and control at each time point using a systems biology approach. RESULTS: At early time points (12-36 h), both control and Tr14-treated wounds showed marked increase in the inducible COX2 enzyme mRNA, while diclofenac-treated wounds did not. Tr14, in contrast, modulated lipoxygenase transcripts, especially ALOX12/15, and phospholipases involved in arachidonate metabolism. Notably, Tr14 modulated a group of cell-type specific markers, including the T cell receptor, that could be explained by an overarching effect on the type of cells that were recruited into the wound tissue. CONCLUSIONS: Tr14 and diclofenac had very different effects on the COX/LOX synthetic pathway after cutaneous wounding. Tr14 allowed normal autoinduction of COX2 mRNA, but suppressed mRNA levels for key enzymes in the leukotriene synthetic pathway. Tr14 appeared to have a broad 'phytocellular' effect on the wound transcriptome by altering the balance of cell types present in the wound.


Subject(s)
Inflammation , Wound Healing , Animals , Anti-Inflammatory Agents, Non-Steroidal , Biomarkers , Diclofenac/pharmacology , Inflammation/genetics , Mice , Wound Healing/genetics
7.
BMC Med Genomics ; 14(1): 216, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34479557

ABSTRACT

BACKGROUND: Cardiovascular disease had a global prevalence of 523 million cases and 18.6 million deaths in 2019. The current standard for diagnosing coronary artery disease (CAD) is coronary angiography. Surprisingly, despite well-established clinical indications, up to 40% of the one million invasive cardiac catheterizations return a result of 'no blockage'. The present studies employed RNA sequencing of whole blood to identify an RNA signature in patients with angiographically confirmed CAD. METHODS: Whole blood RNA was depleted of ribosomal RNA (rRNA) and analyzed by single-molecule sequencing of RNA (RNAseq) to identify transcripts associated with CAD (TRACs) in a discovery group of 96 patients presenting for elective coronary catheterization. The resulting transcript counts were compared between groups to identify differentially expressed genes (DEGs). RESULTS: Surprisingly, 98% of DEGs/TRACs were down-regulated ~ 1.7-fold in patients with mild to severe CAD (> 20% stenosis). The TRACs were independent of comorbid risk factors for CAD, such as sex, hypertension, and smoking. Bioinformatic analysis identified an enrichment in transcripts such as FoxP1, ICOSLG, IKZF4/Eos, SMYD3, TRIM28, and TCF3/E2A that are likely markers of regulatory T cells (Treg), consistent with known reductions in Tregs in CAD. A validation cohort of 80 patients confirmed the overall pattern (92% down-regulation) and supported many of the Treg-related changes. TRACs were enriched for transcripts associated with stress granules, which sequester RNAs, and ciliary and synaptic transcripts, possibly consistent with changes in the immune synapse of developing T cells. CONCLUSIONS: These studies identify a novel mRNA signature of a Treg-like defect in CAD patients and provides a blueprint for a diagnostic test for CAD. The pattern of changes is consistent with stress-related changes in the maturation of T and Treg cells, possibly due to changes in the immune synapse.


Subject(s)
T-Lymphocytes, Regulatory
8.
BMC Biol ; 19(1): 108, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34016118

ABSTRACT

BACKGROUND: The majority of the human genome is transcribed in the form of long non-coding (lnc) RNAs. While these transcripts have attracted considerable interest, their molecular mechanisms of function and biological significance remain controversial. One of the main reasons behind this lies in the significant challenges posed by lncRNAs requiring the development of novel methods and concepts to unravel their functionality. Existing methods often lack cross-validation and independent confirmation by different methodologies and therefore leave significant ambiguity as to the authenticity of the outcomes. Nonetheless, despite all the caveats, it appears that lncRNAs may function, at least in part, by regulating other genes via chromatin interactions. Therefore, the function of a lncRNA could be inferred from the function of genes it regulates. In this work, we present a genome-wide functional annotation strategy for lncRNAs based on identification of their regulatory networks via the integration of three distinct types of approaches: co-expression analysis, mapping of lncRNA-chromatin interactions, and assaying molecular effects of lncRNA knockdowns obtained using an inducible and highly specific CRISPR/Cas13 system. RESULTS: We applied the strategy to annotate 407 very long intergenic non-coding (vlinc) RNAs belonging to a novel widespread subclass of lncRNAs. We show that vlincRNAs indeed appear to regulate multiple genes encoding proteins predominantly involved in RNA- and development-related functions, cell cycle, and cellular adhesion via a mechanism involving proximity between vlincRNAs and their targets in the nucleus. A typical vlincRNAs can be both a positive and negative regulator and regulate multiple genes both in trans and cis. Finally, we show vlincRNAs and their regulatory networks potentially represent novel components of DNA damage response and are functionally important for the ability of cancer cells to survive genotoxic stress. CONCLUSIONS: This study provides strong evidence for the regulatory role of the vlincRNA class of lncRNAs and a potentially important role played by these transcripts in the hidden layer of RNA-based regulation in complex biological systems.


Subject(s)
RNA, Long Noncoding/genetics , Cell Nucleus , Chromatin/genetics , Humans
9.
Vaccines (Basel) ; 8(4)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271964

ABSTRACT

BACKGROUND: According to current data, an effective Ebola virus vaccine should induce both humoral and T-cell immunity. In this work, we focused our efforts on methods for delivering artificial T-cell immunogen in the form of a DNA vaccine, using generation 4 polyamidoamine dendrimers (PAMAM G4) and a polyglucin:spermidine conjugate (PG). METHODS: Optimal conditions were selected for obtaining complexes of previously developed DNA vaccines with cationic polymers. The sizes, mobility and surface charge of the complexes with PG and PAMAM 4G have been determined. The immunogenicity of the obtained vaccine constructs was investigated in BALB/c mice. RESULTS: It was shown that packaging of DNA vaccine constructs both in the PG envelope and the PAMAM 4G envelope results in an increase in their immunogenicity as compared with the group of mice immunized with the of vector plasmid pcDNA3.1 (a negative control). The highest T-cell responses were shown in mice immunized with complexes of DNA vaccines with PG and these responses significantly exceeded those in the groups of animals immunized with both the combination of naked DNAs and the combination DNAs coated with PAMAM 4G. In the group of animals immunized with complexes of the DNA vaccines with PAMAM 4G, no statistical differences were found in the ability to induce T-cell responses, as compared with the group of mice immunized with the combination of naked DNAs. CONCLUSIONS: The PG conjugate can be considered as a promising and safe means to deliver DNA-based vaccines. The use of PAMAM requires further optimization.

10.
Bioinformatics ; 36(20): 5076-5085, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33026062

ABSTRACT

MOTIVATION: The transcriptomic data are being frequently used in the research of biomarker genes of different diseases and biological states. The most common tasks there are the data harmonization and treatment outcome prediction. Both of them can be addressed via the style transfer approach. Either technical factors or any biological details about the samples which we would like to control (gender, biological state, treatment, etc.) can be used as style components. RESULTS: The proposed style transfer solution is based on Conditional Variational Autoencoders, Y-Autoencoders and adversarial feature decomposition. To quantitatively measure the quality of the style transfer, neural network classifiers which predict the style and semantics after training on real expression were used. Comparison with several existing style-transfer based approaches shows that proposed model has the highest style prediction accuracy on all considered datasets while having comparable or the best semantics prediction accuracy. AVAILABILITY AND IMPLEMENTATION: https://github.com/NRshka/stvae-source. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Neural Networks, Computer , Semantics , RNA-Seq , Software , Exome Sequencing
11.
BMC Med Genomics ; 13(1): 160, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33115496

ABSTRACT

BACKGROUND: A variety of DNA-based methods have been applied to identify genetic markers of attention deficit hyperactivity disorder (ADHD), but the connection to RNA-based gene expression has not been fully exploited. METHODS: Using well defined cohorts of discordant, monozygotic twins from the Michigan State University Twin Registry, and case-controlled ADHD cases in adolescents, the present studies utilized advanced single molecule RNA sequencing to identify expressed changes in whole blood RNA in ADHD. Multiple analytical strategies were employed to narrow differentially expressed RNA targets to a small set of potential biomarkers of ADHD. RESULTS: RNA markers common to both the discordant twin study and case-controlled subjects further narrowed the putative targets, some of which had been previously associated with ADHD at the DNA level. The potential role of several differentially expressed genes, including ABCB5, RGS2, GAK, GIT1 and 3 members of the galactose metabolism pathway (GALE, GALT, GALK1) are substantiated by prior associations to ADHD and by established mechanistic connections to molecular pathways relevant to ADHD and behavioral control. CONCLUSIONS: The convergence of DNA, RNA, and metabolic data suggests these may be promising targets for diagnostics and therapeutics in ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/pathology , Diseases in Twins/genetics , Diseases in Twins/pathology , Genetic Markers , Sequence Analysis, RNA/methods , Twins/genetics , Adolescent , Adult , Attention Deficit Disorder with Hyperactivity/blood , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Computational Biology , Diseases in Twins/blood , Female , Humans , Male , Middle Aged , Young Adult
12.
Vaccines (Basel) ; 8(3)2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32784907

ABSTRACT

BACKGROUND: Development of a universal vaccine capable to induce antibody responses against a broad range of influenza virus strains attracts growing attention. Hemagglutinin stem and the exposed fragment of influenza virus M2 protein are promising targets for induction of cross-protective humoral and cell-mediated response, since they contain conservative epitopes capable to induce antibodies and cytotoxic T lymphocytes (CTLs) to a wide range of influenza virus subtypes. METHODS: In this study, we generated DNA vaccine constructs encoding artificial antigens AgH1, AgH3, and AgM2 designed on the basis of conservative hemagglutinin stem fragments of two influenza A virus subtypes, H1N1 and H3N2, and conservative M2 protein, and evaluate their immunogenicity and protective efficacy. To obtain DNA vaccine constructs, genes encoding the designed antigens were cloned into a pcDNA3.1 vector. Expression of the target genes in 293T cells transfected with DNA vaccine constructs has been confirmed by synthesis of specific mRNA. RESULTS: Immunization of BALB/c mice with DNA vaccines encoding these antigens was shown to evoke humoral and T-cell immune responses as well as a moderated statistically significant cross-protective effect against two heterologous viruses A/California/4/2009 (H1N1pdm09) and A/Aichi/2/68 (H3N2). CONCLUSIONS: The results demonstrate a potential approach to creating a universal influenza vaccine based on artificial antigens.

13.
Sensors (Basel) ; 20(13)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610652

ABSTRACT

In vitro cellular models are promising tools for studying normal and pathological conditions. One of their important applications is the development of genetically engineered biosensor systems to investigate, in real time, the processes occurring in living cells. At present, there are fluorescence, protein-based, sensory systems for detecting various substances in living cells (for example, hydrogen peroxide, ATP, Ca2+ etc.,) or for detecting processes such as endoplasmic reticulum stress. Such systems help to study the mechanisms underlying the pathogenic processes and diseases and to screen for potential therapeutic compounds. It is also necessary to develop new tools for the processing and analysis of obtained microimages. Here, we present our web-application CellCountCV for automation of microscopic cell images analysis, which is based on fully convolutional deep neural networks. This approach can efficiently deal with non-convex overlapping objects, that are virtually inseparable with conventional image processing methods. The cell counts predicted with CellCountCV were very close to expert estimates (the average error rate was < 4%). CellCountCV was used to analyze large series of microscopic images obtained in experimental studies and it was able to demonstrate endoplasmic reticulum stress development and to catch the dose-dependent effect of tunicamycin.


Subject(s)
Cell Count , Image Processing, Computer-Assisted , Neural Networks, Computer , Automation , Humans , Microscopy
14.
Vaccines (Basel) ; 7(3)2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31390770

ABSTRACT

The construction of artificial proteins using conservative B-cell and T-cell epitopes is believed to be a promising approach for a vaccine design against diverse viral infections. This article describes the development of an artificial HIV-1 immunogen using a polyepitope immunogen design strategy. We developed a recombinant protein, referred to as nTBI, that contains epitopes recognized by broadly neutralizing HIV-1 antibodies (bNAbs) combined with Th-epitopes. This is a modified version of a previously designed artificial protein, TBI (T- and B-cell epitopes containing Immunogen), carrying four T- and five B-cell epitopes from HIV-1 Env and Gag proteins. To engineer the nTBI molecule, three B-cell epitopes of the TBI protein were replaced with the epitopes recognized by broadly neutralizing HIV-1 antibodies 10E8, 2F5, and a linear peptide mimic of VRC01 epitope. We showed that immunization of rabbits with the nTBI protein elicited antibodies that recognize HIV-1 proteins and were able to neutralize Env-pseudotyped SF162.LS HIV-1 strain (tier 1). Competition assay revealed that immunization of rabbits with nTBI induced mainly 10E8-like antibodies. Our findings support the use of nTBI protein as an immunogen with predefined favorable antigenic properties.

15.
Vaccines (Basel) ; 7(2)2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30934980

ABSTRACT

Background: The lack of effective vaccines against Ebola virus initiates a search for new approaches to overcoming this problem. The aim of the study was to design artificial polyepitope T-cell immunogens⁻⁻candidate DNA vaccines against Ebola virus and to evaluate their capacity to induce a specific immune response in a laboratory animal model. Method: Design of two artificial polyepitope T-cell immunogens, one of which (EV.CTL) includes cytotoxic and the other (EV.Th)⁻⁻T-helper epitopes of Ebola virus proteins was carried out using original TEpredict/PolyCTLDesigner software. Synthesized genes were cloned in pcDNA3.1 plasmid vector. Target gene expression was estimated by synthesis of specific mRNAs and proteins in cells transfected with recombinant plasmids. Immunogenicity of obtained DNA vaccine constructs was evaluated according to their capacity to induce T-cell response in BALB/c mice using IFNγ ELISpot and ICS. Results: We show that recombinant plasmids pEV.CTL and pEV.Th encoding artificial antigens provide synthesis of corresponding mRNAs and proteins in transfected cells, as well as induce specific responses both to CD4+ and CD8+ T-lymphocytes in immunized animals. Conclusions: The obtained recombinant plasmids can be regarded as promising DNA vaccine candidates in future studies of their capacity to induce cytotoxic and protective responses against Ebola virus.

16.
J Bioinform Comput Biol ; 16(1): 1750029, 2018 02.
Article in English | MEDLINE | ID: mdl-29301444

ABSTRACT

MicroRNAs (miRNAs) play important roles in the regulation of gene expression at the post-transcriptional level. Many exogenous compounds or xenobiotics may affect microRNA expression. It is a well-established fact that xenobiotics with planar structure like TCDD, benzo(a)pyrene (BP) can bind aryl hydrocarbon receptor (AhR) followed by its nuclear translocation and transcriptional activation of target genes. Another chemically diverse group of xenobiotics including phenobarbital, DDT, can activate the nuclear receptor CAR and in some cases estrogen receptors ESR1 and ESR2. We hypothesized that such chemicals can affect miRNA expression through the activation of AHR, CAR, and ESRs. To prove this statement, we used in silico methods to find DRE, PBEM, ERE potential binding sites for these receptors, respectively. We have predicted AhR, CAR, and ESRs binding sites in 224 rat, 201 mouse, and 232 human promoters of miRNA-coding genes. In addition, we have identified a number of miRNAs with predicted AhR, CAR, and ESRs binding sites that are known as oncogenes and as tumor suppressors. Our results, obtained in silico, open a new strategy for ongoing experimental studies and will contribute to further investigation of epigenetic mechanisms of carcinogenesis.


Subject(s)
MicroRNAs/genetics , Promoter Regions, Genetic , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Binding Sites , Computational Biology/methods , Computer Simulation , Constitutive Androstane Receptor , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Introns , Mice , MicroRNAs/metabolism , Rats , Response Elements , Software , Xenobiotics/metabolism
17.
Nucleic Acids Res ; 44(7): 3233-52, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27001520

ABSTRACT

Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlinc RNAs genes likely function in cisto activate nearby genes. This effect while most pronounced in closely spaced vlinc RNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlinc RNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs.


Subject(s)
RNA, Long Noncoding/genetics , Cell Nucleus/genetics , Embryonic Development/genetics , Gene Expression Regulation , Humans , Insulator Elements , Molecular Sequence Annotation , Promoter Regions, Genetic , RNA, Long Noncoding/classification , RNA, Long Noncoding/metabolism , Retroviridae/genetics , Systems Biology , Terminal Repeat Sequences , Transcription Factors/metabolism
18.
PLoS One ; 10(3): e0116412, 2015.
Article in English | MEDLINE | ID: mdl-25786238

ABSTRACT

A successful HIV vaccine in addition to induction of antibody responses should elicit effective T cell responses. Here we described possible strategies for rational design of T-cell vaccine capable to induce high levels of both CD4+ and CD8+ T- cell responses. We developed artificial HIV-1 polyepitope T-cell immunogens based on the conserved natural CD8+ and CD4+ T cell epitopes from different HIV-1 strains and restricted by the most frequent major human leukocyte antigen (HLA) alleles. Designed immunogens contain optimized core polyepitope sequence and additional "signal" sequences which increase epitope processing and presentation to CD8+ and CD4+ T-lymphocytes: N-terminal ubiquitin, N-terminal signal peptide and C-terminal tyrosine motif of LAMP-1 protein. As a result we engineered three T cell immunogens - TCI-N, TCI-N2, and TCI-N3, with different combinations of signal sequences. All designed immunogens were able to elicit HIV-specific CD4+ and CD8+ T cell responses following immunization. Attachment of either ubiquitin or ER-signal/LAMP-1 sequences increased both CD4+ and CD8+ mediated HIV-specific T cell responses in comparison with polyepitope immunogen without any additional signal sequences. Moreover, TCI-N3 polyepitope immunogen with ubiquitin generated highest magnitude of HIV-specific CD4+ and CD8+ T cell responses in our study. Obtained data suggests that attachment of signal sequences targeting polyepitope immunogens to either MHC class I or MHC class II presentation pathways may improve immunogenicity of T-cell vaccines. These results support the strategy of the rational T cell immunogen design and contribute to the development of effective HIV-1 vaccine.


Subject(s)
AIDS Vaccines/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , HIV-1/immunology , AIDS Vaccines/genetics , Animals , Epitopes, T-Lymphocyte/genetics , Female , HEK293 Cells , HIV-1/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Humans , Mice , Mice, Inbred BALB C , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
19.
Expert Rev Vaccines ; 13(1): 155-73, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24308576

ABSTRACT

RV144 clinical trial was modestly effective in preventing HIV infection. New alternative approaches are needed to design improved HIV-1 vaccines and their delivery strategies. One of these approaches is construction of synthetic polyepitope HIV-1 immunogen using protective T- and B-cell epitopes that can induce broadly neutralizing antibodies and responses of cytotoxic (CD8(+) CTL) and helpers (CD4(+) Th) T-lymphocytes. This approach seems to be promising for designing of new generation of vaccines against HIV-1, enables in theory to cope with HIV-1 antigenic variability, focuses immune responses on protective determinants and enables to exclude from the vaccine compound that can induce autoantibodies or antibodies enhancing HIV-1 infectivity. Herein, the authors will focus on construction and rational design of polyepitope T-cell HIV-1 immunogens and their delivery, including: advantages and disadvantages of existing T-cell epitope prediction methods; features of organization of polyepitope immunogens, which can generate high-level CD8(+) and CD4(+) T-lymphocyte responses; the strategies to optimize efficient processing, presentation and immunogenicity of polyepitope constructs; original software to design polyepitope immunogens; and delivery vectors as well as mucosal strategies of vaccination. This new knowledge may bring us a one step closer to developing an effective T-cell vaccine against HIV-1, other chronic viral infections and cancer.


Subject(s)
AIDS Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , HIV-1/immunology , AIDS Vaccines/genetics , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Computational Biology/trends , Drug Discovery/trends , Epitopes, T-Lymphocyte/genetics , HIV-1/genetics , Humans , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
20.
BMC Res Notes ; 6: 407, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24107711

ABSTRACT

BACKGROUND: Construction of artificial polyepitope antigens is one of the most promising strategies for developing more efficient and safer vaccines evoking T-cell immune responses. Epitope rearrangements and utilization of certain spacer sequences have been proven to greatly influence the immunogenicity of polyepitope constructs. However, despite numerous efforts towards constructing and evaluating artificial polyepitope immunogens as well as despite numerous computational methods elaborated to date for predicting T-cell epitopes, peptides binding to TAP and for antigen processing prediction, only a few computational tools were currently developed for rational design of polyepitope antigens. FINDINGS: Here we present a PolyCTLDesigner program that is intended for constructing polyepitope immunogens. Given a set of either known or predicted T-cell epitopes the program selects N-terminal flanking sequences for each epitope to optimize its binding to TAP (if necessary) and joins resulting oligopeptides into a polyepitope in a way providing efficient liberation of potential epitopes by proteasomal and/or immunoproteasomal processing. And it also tries to minimize the number of non-target junctional epitopes resulting from artificial juxtaposition of target epitopes within the polyepitope. For constructing polyepitopes, PolyCTLDesigner utilizes known amino acid patterns of TAP-binding and proteasomal/immunoproteasomal cleavage specificity together with genetic algorithm and graph theory approaches. The program was implemented using Python programming language and it can be used either interactively or through scripting, which allows users familiar with Python to create custom pipelines. CONCLUSIONS: The developed software realizes a rational approach to designing poly-CTL-epitope antigens and can be used to develop new candidate polyepitope vaccines. The current version of PolyCTLDesigner is integrated with our TEpredict program for predicting T-cell epitopes, and thus it can be used not only for constructing the polyepitope antigens based on preselected sets of T-cell epitopes, but also for predicting cytotoxic and helper T-cell epitopes within selected protein antigens. PolyCTLDesigner is freely available from the project's web site: http://tepredict.sourceforge.net/PolyCTLDesigner.html.


Subject(s)
Antigens/immunology , Computational Biology/methods , Epitopes, T-Lymphocyte/immunology , Software , T-Lymphocytes, Cytotoxic/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...