Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
PLoS One ; 19(7): e0305034, 2024.
Article in English | MEDLINE | ID: mdl-38954719

ABSTRACT

Yersinia pestis, the causative agent of plague and a biological threat agent, presents an urgent need for novel medical countermeasures due to documented cases of naturally acquired antibiotic resistance and potential person-to-person spread during a pneumonic infection. Immunotherapy has been proposed as a way to circumvent current and future antibiotic resistance. Here, we describe the development and characterization of two affinity matured human antibodies (αF1Ig AM2 and αF1Ig AM8) that promote survival of mice after exposure to aerosolized Y. pestis. We share details of the error prone PCR and yeast display technology-based affinity maturation process that we used. The resultant matured antibodies have nanomolar affinity for Y. pestis F1 antigen, are produced in high yield, and are resilient to 37°C stress for up to 6 months. Importantly, in vitro assays using a murine macrophage cell line demonstrated that αF1Ig AM2 and αF1Ig AM8 are opsonic. Even more importantly, in vivo studies using pneumonic plague mouse models showed that 100% of the mice receiving 500 µg of IgGs αF1Ig AM2 and αF1Ig AM8 survived lethal challenge with aerosolized Y. pestis CO92. Combined, these results provide evidence of the quality and robustness of αF1Ig AM2 and αF1Ig AM8 and support their development as potential medical countermeasures against plague.


Subject(s)
Antibodies, Bacterial , Plague , Yersinia pestis , Animals , Humans , Mice , Yersinia pestis/immunology , Plague/immunology , Plague/prevention & control , Antibodies, Bacterial/immunology , Bacterial Proteins/immunology , Female , Antibody Affinity , Medical Countermeasures , Antigens, Bacterial/immunology , Disease Models, Animal
2.
Sci Rep ; 13(1): 11115, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37429983

ABSTRACT

Lava overflows are highly hazardous phenomena that can occur at Stromboli. They can destabilize the crater area and the "Sciara del Fuoco" unstable slope, formed by several sector collapses, which can generate potentially tsunamigenic landslides. In this study, we have identified precursors of the October-November 2022 effusive crisis through seismic and thermal camera measurements. We analyzed the lava overflow on October 9, which was preceded by a crater-rim collapse, and the overflow on November 16. In both cases, seismic precursors anticipating the overflow onset have been observed. The analysis of the seismic and thermal data led to the conclusion that the seismic precursors were caused by an escalating degassing process from the eruptive vent, which climaxed with the overflows. Volcano deformation derived from ground-based InSAR and strainmeter data showed that inflation of the crater area accompanied the escalating degassing process up to the beginning of the lava overflows. The inflation of the crater area was especially evident in the October 9 episode, which also showed a longer seismic precursor compared to the November 16 event (58 and 40 min respectively). These results are important for understanding Stromboli's eruptive mechanisms and open a perspective for early warning of potentially dangerous phenomena.

3.
Bioengineered ; 13(5): 12598-12624, 2022 05.
Article in English | MEDLINE | ID: mdl-35599623

ABSTRACT

Here, we describe the isolation of 18 unique anti SARS-CoV-2 human single-chain antibodies from an antibody library derived from healthy donors. The selection used a combination of phage and yeast display technologies and included counter-selection strategies meant to direct the selection of the receptor-binding motif (RBM) of SARS-CoV-2 spike protein's receptor binding domain (RBD2). Selected antibodies were characterized in various formats including IgG, using flow cytometry, ELISA, high throughput SPR, and fluorescence microscopy. We report antibodies' RBD2 recognition specificity, binding affinity, and epitope diversity, as well as ability to block RBD2 binding to the human receptor angiotensin-converting enzyme 2 (ACE2) and to neutralize authentic SARS-CoV-2 virus infection in vitro. We present evidence supporting that: 1) most of our antibodies (16 out of 18) selectively recognize RBD2; 2) the best performing 8 antibodies target eight different epitopes of RBD2; 3) one of the pairs tested in sandwich assays detects RBD2 with sub-picomolar sensitivity; and 4) two antibody pairs inhibit SARS-CoV-2 infection at low nanomolar half neutralization titers. Based on these results, we conclude that our antibodies have high potential for therapeutic and diagnostic applications. Importantly, our results indicate that readily available non immune (naïve) antibody libraries obtained from healthy donors can be used to select high-quality monoclonal antibodies, bypassing the need for blood of infected patients, and offering a widely accessible and low-cost alternative to more sophisticated and expensive antibody selection approaches (e.g. single B cell analysis and natural evolution in humanized mice).


Subject(s)
Antibodies, Viral , COVID-19 , Single-Chain Antibodies , Antibodies, Neutralizing , COVID-19/immunology , Epitopes , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
4.
Nanomedicine (Lond) ; 17(5): 275-288, 2022 02.
Article in English | MEDLINE | ID: mdl-35133189

ABSTRACT

Aim: Verify the presence of inorganic nanoparticle entities in brain tissue samples from sudden infant death syndrome (SIDS)/sudden intrauterine unexplained death syndrome (SIUDS) cases. The presence of inorganic debris could be a cofactor that compromises proper brain tissue functionality. Materials & methods: A novel autopsy approach that consists of neuropathological analysis procedures combined with energy dispersive spectroscopy/field emission gun environmental scanning electron microscopy investigations was implemented on 10 SIDS/SIUDS cases, whereas control samples were obtained from 10 cases of fetal/infant death from known cause. Results: Developmental abnormalities of the brain were associated with the presence of foreign bodies. Although nanoparticles were present as well in control samples, they were not associated with histological brain anomalies, as was the case in SIDS/SIUDS. Conclusion: Inorganic particles present in brain tissues demonstrate their ability to cross the hemato-encephalic barrier and to interact with tissues and cells in an unknown yet pathological fashion. This gives a rationale to consider them as cofactors of lethality.


Subject(s)
Sudden Infant Death , Autopsy , Brain/pathology , Fetal Death , Humans , Sudden Infant Death/etiology , Sudden Infant Death/pathology , Syndrome
5.
Funct Plant Biol ; 48(11): 1124-1138, 2021 10.
Article in English | MEDLINE | ID: mdl-34587473

ABSTRACT

Delayed canopy senescence or 'stay-green' (SG) trait in maize (Zea mays L.) could improve drought tolerance. Two field trials comparing four to six maize hybrids with different senescence rate were carried out at Buenos Aires, Argentina, varying water availability during the reproductive period. Green leaf area at maturity was related to kernel weight (r2=0.94***) but its relationship with yield was weaker (r2=0.51-53*) and post-silking dry matter remobilisation was negatively related with the SG trait (r2=0.84**). Two additional experiments were carried out in 63 L pots by withholding irrigation in half of the pots after silking. The SG hybrid achieved lower root biomass at silking, a shallower root distribution and larger root growth in the post-silking period. Under drought conditions, stomatal conductance was lower in the SG hybrid but photosynthetic electron transport rate was higher. Higher post-silking dry matter assimilation in the SG hybrid was compensated for by higher dry matter remobilisation in the non-SG. Higher kernel number per plant in the non-SG hybrid with no ability to compensate for by higher kernel weight in the SG, resulted in slightly higher yields in the non-SG under drought. A water conservation strategy associated with a shallower root system could be linked to the SG trait, promoting faster water depletion at upper soil levels and reduced stomatal conductance at the leaf level but with no conclusive yield advantage.


Subject(s)
Droughts , Zea mays , Plant Leaves , Soil , Water
6.
Nanomedicine (Lond) ; 16(4): 265-274, 2021 02.
Article in English | MEDLINE | ID: mdl-33533653

ABSTRACT

We report, for the first time, the surprising presence of toxic nanoparticles, especially silver, in the brain of a fetus, who died unexpectedly at the end of a regular pregnancy. After an accurate autopsy, including the examination of the fetal annexes, an in-depth anatomopathological study of the nervous system and a search by scanning electron microscopy of nanoparticles in the brain, we highlighted the sequence of events that may have led to this fetal death, triggered primarily by the transition of nanosized xenobiotics from the mother to the fetal bloodstream. From this report emerges the importance of considering the search of nanosubstances in the brain during routine investigations following unexpected and unexplained fetal and infant deaths.


Subject(s)
Metal Nanoparticles , Stillbirth , Brain , Cause of Death , Female , Humans , Metal Nanoparticles/toxicity , Pregnancy , Silver/toxicity
7.
Protein Eng Des Sel ; 342021 02 15.
Article in English | MEDLINE | ID: mdl-33586761

ABSTRACT

In vitro display technologies based on phage and yeast have a successful history of selecting single-chain variable fragment (scFv) antibodies against various targets. However, single-chain antibodies are often unstable and poorly expressed in Escherichia coli. Here, we explore the feasibility of converting scFv antibodies to an intrinsically fluorescent format by inserting the monomeric, stable fluorescent protein named thermal green, between the light- and heavy-chain variable regions. Our results show that the scTGP format maintains the affinity and specificity of the antibodies, improves expression levels, allows one-step fluorescent assay for detection of binding and is a suitable reagent for epitope binning. We also report the crystal structure of an scTGP construct that recognizes phosphorylated tyrosine on FcεR1 receptor of the allergy pathway.


Subject(s)
Single-Chain Antibodies , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Fluorescent Dyes
8.
Immunotargets Ther ; 9: 299-316, 2020.
Article in English | MEDLINE | ID: mdl-33294421

ABSTRACT

BACKGROUND: Yersinia pestis is a category A infective agent that causes bubonic, septicemic, and pneumonic plague. Notably, the acquisition of antimicrobial or multidrug resistance through natural or purposed means qualifies Y. pestis as a potential biothreat agent. Therefore, high-quality antibodies designed for accurate and sensitive Y. pestis diagnostics, and therapeutics potentiating or replacing traditional antibiotics are of utmost need for national security and public health preparedness. METHODS: Here, we describe a set of human monoclonal immunoglobulins (IgG1s) targeting Y. pestis fraction 1 (F1) antigen, previously derived from in vitro evolution of a phage-display library of single-chain antibodies (scFv). We extensively characterized these antibodies and their effect on bacterial and mammalian cells via: ELISA, flow cytometry, mass spectrometry, spectroscopy, and various metabolic assays. RESULTS: Two of our anti-F1 IgG (αF1Ig 2 and αF1Ig 8) stood out for high production yield, specificity, and stability. These two antibodies were additionally attractive in that they displayed picomolar affinity, did not compete when binding Y. pestis, and retained immunoreactivity upon chemical derivatization. Most importantly, these antibodies detected <1,000 Y. pestis cells in sandwich ELISA, did not harm respiratory epithelial cells, induced Y. pestis agglutination at low concentration (350 nM), and caused apparent reduction in cell growth when radiolabeled at a nonagglutinating concentration (34 nM). CONCLUSION: These antibodies are amenable to the development of accurate and sensitive diagnostics and immuno/radioimmunotherapeutics.

9.
MAbs ; 12(1): 1843754, 2020.
Article in English | MEDLINE | ID: mdl-33206590

ABSTRACT

Interactions between the cytoplasmic domains of viral transmembrane proteins and host machinery often determine the outcome of viral infection. The M2 protein of influenza A has been identified as a key player in autophagy-mediated viral replication. Here, we describe the engineering and validation of an antibody specific for the cytoplasmic domain of the M2 protein. Through phage and yeast display selection techniques, we obtained an antibody that recognizes: 1) the M2 cytoplasmic domain purified from bacterial inclusion bodies and refolded, 2) full-length M2 recombinant protein expressed in mammalian cells, and 3) native M2 protein in influenza A infected cells. This antibody can serve as a molecular tool to enhance our knowledge of protein-protein interactions between influenza A virus and the host cell machinery. We anticipate the methods described herein will further the development of antibodies specific to the cytoplasmic domains of transmembrane proteins.


Subject(s)
Antibodies, Viral/immunology , Antibodies/immunology , Influenza A virus/immunology , Influenza, Human , Viral Matrix Proteins/immunology , HEK293 Cells , Humans
10.
Sci Rep ; 10(1): 10296, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32581259

ABSTRACT

Two paroxysmal explosions occurred at Stromboli volcano in the Summer 2019, the first of which, on July 3, caused one fatality and some injuries. Within the 56 days between the two paroxysmal explosions, effusive activity from vents located in the summit area of the volcano occurred. No significant changes in routinely monitored parameters were detected before the paroxysmal explosions. However, we have calculated the polarization and the fractal dimension time series of the seismic signals from November 15, 2018 to September 15, 2019 and we have recognized variations that preceded the paroxysmal activity. In addition, we have defined a new parameter, based on RSAM estimation, related to the Very Long Period events, called VLP size, by means of which we have noticed significant variations through the whole month preceding the paroxysm of July 3. In the short term, we have analyzed the signals of a borehole strainmeter installed on the island, obtaining automatic triggers 10 minutes and 7.5 minutes before the July 3 and the August 28 paroxysms, respectively. The results of this study highlight mid-term seismic precursors of paroxysmal activity and provide valuable evidence for the development of an early warning system for paroxysmal explosions based on strainmeter measurements.

11.
Bioconjug Chem ; 29(8): 2654-2664, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29979588

ABSTRACT

Protein-ligand conjugations are usually carried out in aqueous media in order to mimic the environment within which the conjugates will be used. In this work, we focus on the conjugation of amphiphilic variants of elastin-like polypeptide (ELP), short elastin (sEL), to poorly water-soluble compounds like OPPVs ( p-phenylenevinylene oligomers), triarylamines, and polypyridine-metal complexes. These conjugations are problematic when carried out in aqueous phase because hydrophobic ligands tend to avoid exposure to water, which in turn causes the ligand to self-aggregate and/or interact noncovalently with hydrophobic regions of the amphiphile. Ultimately, this behavior leads to low conjugation efficiency and contamination with strong noncovalent "conjugates". After exploring the solubility of sEL in various organic solvents, we have established an efficient conjugation methodology for obtaining covalent conjugates virtually free of contaminating noncovalent complexes. When conjugating carboxylated ligands to the amphiphile amines, we demonstrate that even when only one amine (the N-terminus) is present, its derivatization is 98% efficient. When conjugating amine moieties to the amphiphile carboxyls (a problematic configuration), protein multimerization is avoided, 98-100% of the protein is conjugated, and the unreacted ligand is recovered in pure form. Our syntheses occur in "one pot", and our purification procedure is a simple workup utilizing a combination of water and organic solvent extractions. This conjugation methodology might provide a solution to problems arising from solubility mismatch of protein and ligand, and it is likely to be widely applied for modification of recombinant amphiphiles used for drug delivery (PEG-antibodies, polymer-enzymes, food proteins), cell adhesion (collagen, hydrophobins), synthesis of nanostructures (peptides), and engineering of biocompatible optoelectronics (biological polymers), to cite a few.


Subject(s)
Amines/chemistry , Elastin/chemistry , Metals/chemistry , Organic Chemicals/chemistry , Polymers/chemistry , Pyridines/chemistry , Solvents/chemistry , Electrophoresis, Polyacrylamide Gel , Hydrophobic and Hydrophilic Interactions , Ligands , Protein Multimerization , Proton Magnetic Resonance Spectroscopy , Solubility , Spectrophotometry, Ultraviolet
12.
J Forensic Sci ; 61(3): 858-861, 2016 May.
Article in English | MEDLINE | ID: mdl-27122433

ABSTRACT

The need to implement novel techniques, able to support a causal link between exposure and pathology, has been emerged over the recent years. The application of scanning electron microscope coupled with probe X-ray microanalysis (by means of an energy-dispersive spectroscopy) has been developed by our research group for the bone remains investigation. It was aimed to testify the exposure to microsized and nanosized pollutions, due to military activities in the Quirra interforce firing range, of a Sardinian shepherd, died of acute leukemia. Metallic debris with a combustive morphology and with an oncogenic potential has been surely detected inside his bone marrow canal. This novel technique has proved to be able to bring to light a source of past exposure preserved over time within the bone marrow canal. It can be useful for postmortem analyses, delivering a new avant-garde approach to modern forensic science.

13.
Am J Primatol ; 78(1): 152-66, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25771746

ABSTRACT

While osteopenia (OPE) and osteoporosis (OPO) have been studied in various species of aging nonhuman primates and extensively in ovariectomized rhesus and cynomolgus macaques, there is virtually no information on the effects of castration on the skeleton of male nonhuman primates. Most information on castrated male primates comes from a few studies on the skeletons of eunuchs. This report used a subset of the Caribbean Primate Research Center's (CPRC) Cayo Santiago (CS) rhesus macaque skeletal collection to qualitatively and quantitatively compare the bone mineral density (BMD) of castrated and age-matched intact males and, thereby, determine the long-term effects of castration (orchidectomy) on bone. Lumbar vertebrae, femora, and crania were evaluated using dual-energy X-ray absorptiometry (DEXA or DXA) and digital radiography augmented, when fresh tissues were available, with autoradiography and histology. Results confirmed physical examinations of long bones that castration causes changes in the skeleton of male rhesus macaques similar to those found in eunuchs, including OPE and OPO of the vertebrae and femora, thinning of the skull, and vertebral fractures and kyphosis of the spine more severe than that caused by normal aging alone. Also like eunuchs, some castrated CS male rhesus monkeys had a longer life span than intact males or females. Based on these results and the effects of castration on other tissues and organs of eunuchs, on behavior, hormone profiles and possibly on cognition and visual perception of human and nonhuman primates, and other mammals, castrated male rhesus macaques should be used with caution for laboratory studies and should be considered a separate category from intact males. Despite these caveats, the castrated male rhesus macaque should make an excellent animal model in which to test hormone replacement therapies for boys and men orchidectomized for testicular and prostate cancer.


Subject(s)
Bone Density , Femur/physiology , Lumbar Vertebrae/physiology , Macaca mulatta/physiology , Orchiectomy/veterinary , Skull/physiology , Absorptiometry, Photon/veterinary , Animals , Autoradiography/veterinary , Male , Puerto Rico , Radiographic Image Enhancement
14.
Environ Toxicol ; 31(11): 1552-1562, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26031494

ABSTRACT

We describe the use of different life stages of the Mediterranean sea urchin Paracentrotus lividus for the assessment of the possible risk posed by nanoparticles (NPs) in the coastal water. A first screening for the presence of NPs in sea water may be obtained by checking their presence inside tissues of organisms taken from the wild. The ability of NPs to pass from gut to the coelomic fluid is demonstrated by accumulation in sea urchin coelomocytes; the toxicity on sperms can be measured by embryotoxicity markers after sperm exposure, whereas the transfer through the food chain can be observed by developmental anomalies in larvae fed with microalgae exposed to NPs. The most used spermiotoxicity and embryotoxicity tests are described, as well as the biochemical and histochemical analyses of cholinesterase (ChE) activities, which are used to verify toxicity parameters such as inflammation, neurotoxicity, and interference in cell-to-cell communication. Morphological markers of toxicity, in particular skeletal anomalies, are described and classified. In addition, NPs may impair viability of the immune cells of adult specimens. Molecular similarity between echinoderm and human immune cells is shown and discussed. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1552-1562, 2016.


Subject(s)
Nanoparticles/toxicity , Sea Urchins/drug effects , Animals , Embryo, Nonmammalian/drug effects , Fertilization/drug effects , Larva/drug effects , Male , Sea Urchins/embryology , Sea Urchins/metabolism , Spermatozoa/drug effects , Stress, Physiological
15.
Chem Commun (Camb) ; 51(20): 4180-4183, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25634426

ABSTRACT

The methylammonium cation in [CH3NH3]PbI3 demonstrates increasing positional disorder on heating from 100 K to 352 K. In the tetragonal phase, stable between 165 K and 327 K, the cation is disordered over four sites directed toward the faces of the distorted cubic [PbI3](-) framework and migrates towards the cavity centre with increasing temperature.

16.
J Appl Toxicol ; 34(5): 562-75, 2014 May.
Article in English | MEDLINE | ID: mdl-24395442

ABSTRACT

A variety of consumer products containing silver nanoparticles (Ag NPs) are currently marketed. However, their safety for humans and for the environment has not yet been established and no standard method to assess their toxicity is currently available. The objective of this work was to develop an effective method to test Ag NP toxicity and to evaluate the effects of ion release and Ag NP size on a vertebrate model. To this aim, the zebrafish animal model was exposed to a solution of commercial nanosilver. While the exposure of embryos still surrounded by the chorion did not allow a definite estimation of the toxic effects exerted by the compound, the exposure for 48 h of 3-day-old zebrafish hatched embryos afforded a reliable evaluation of the effects of Ag NPs. The effects of the exposure were detected especially at molecular level; in fact, some selected genes expressed differentially after the exposure. The Ag NP toxic performance was due to the combined effect of Ag(+) ion release and Ag NP size. However, the effect of NP size was particularly detectable at the lowest concentration of nanosilver tested (0.01 mg l(-1)) and depended on the solubilization media. The results obtained indicate that in vivo toxicity studies of nanosilver should be performed with ad hoc methods (in this case using hatched embryos) that might be different depending on the type of nanosilver. Moreover, the addition of this compound to commercial products should take into consideration the Ag NP solubilization media.


Subject(s)
Embryo, Nonmammalian/drug effects , Nanoparticles/chemistry , Silver/toxicity , Zebrafish/embryology , Animals , Colloids , Dose-Response Relationship, Drug , Embryo, Nonmammalian/ultrastructure , Gene Expression Regulation, Developmental/drug effects , Lethal Dose 50 , Microscopy, Electron, Scanning , Silver/chemistry , Silver/pharmacokinetics , Solutions , Tissue Distribution , Zebrafish/genetics
17.
Biomed Res Int ; 2013: 205183, 2013.
Article in English | MEDLINE | ID: mdl-23991412

ABSTRACT

Metal nanosolicoparticles are suspected to cause diseases in a number of organisms, including man. In this paper, we report the effects of nanosilver (Ag, 1-20 nm particles) on the early development of the zebrafish, a well-established vertebrate model. Embryos at the midgastrula stage were exposed to concentrations ranging from 100 to 0.001 mg/L to verify the effects on different endpoints: lethality, morphology, expression of cholinergic molecules, and development of the immune system. (1) Relative risk of mortality was exponential in the range between 0.001 and 10 mg/L. Exposure to 100 mg/L caused 100% death of embryos before reaching the tail-bud stage. (2) Developmental anomalies were present in the 72 h larvae obtained from embryos exposed to nanosilver: whole body length, decreased eye dimension, and slow response to solicitation by gentle touch with a needle tip, with a significant threshold at 0.1 mg/L. (3) Dose-dependent inhibition of acetylcholinesterase activity was significant among the exposures, except between 1 mg/L and 10 mg/L. (4) The distribution of CD41+ cells and of CDF/LIF-like immunoreactivity was altered according to the Ag concentration. The possible effect of nanosilver in impairing immune system differentiation through the inhibition of molecules related to the cholinergic system is discussed.


Subject(s)
Cholinesterases/metabolism , Leukemia Inhibitory Factor/metabolism , Metal Nanoparticles/toxicity , Platelet Membrane Glycoprotein IIb/metabolism , Prenatal Exposure Delayed Effects/metabolism , Silver/toxicity , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Female , Larva , Metal Nanoparticles/administration & dosage , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Silver/administration & dosage , Survival Rate
18.
Aquat Toxicol ; 130-131: 77-85, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23376697

ABSTRACT

The objective of this study is to examine the toxicity of engineered nanoparticles (NPs) that are dispersed in sea water by using an in vivo model. Because many products of nanotechnology contain NPs and are commonly used and well-established in the market, the accidental release of NPs into the air and water is quite possible. Indeed, at the end of their life cycle, some NPs are inevitably released into waste water and can reach marine ecosystem and affect the organisms there. Although there are few data on the presence of NPs in the marine environment, our awareness of their potential impact on environmental and organismal health is growing. Shallow-water benthonic organisms such as sea urchins provide planktonic larvae as a trophic base for finfish juveniles and are exposed to water from estuaries and precipitation. Such organisms can therefore be directly affected by NPs that are dispersed into those media. We evaluated the effects of exposure to different concentrations of nanosilver, titanium oxide and cobalt NPs on the sperm of the sea urchin Paracentrotus lividus by analyzing the functionality and the morphology and biochemistry of the first developmental stages of the sea urchin. Sperm were exposed to sea water containing suspensions of NPs ranging from 0.0001 mg/L to 1 mg/L. Fertilization ability was not affected, but developmental anomalies were identified in embryos from the gastrula to pluteus stages, including morphological alterations of the skeletal rods. In addition, the enzymatic activity (cholinesterase, ChE) of the larvae was measured. Acetylcholinesterase (AChE) and propionylcholinesterase activity (PrChE) was affected in all of the exposed samples. The results did not vary consistently with the concentration of NP, but controls were significantly different from exposed samples. Exposure of sea urchin to these NPs may cause neurotoxic damage, and the altered ChE activity may be involved in skeletogenic aberrations. In conclusion, the sea urchin represents a suitable and sensitive model for testing the toxicity and effects of engineered NPs that are dispersed in sea water.


Subject(s)
Metal Nanoparticles/toxicity , Paracentrotus/drug effects , Particle Size , Acetylcholinesterase/metabolism , Animals , Cholinesterases/metabolism , Cobalt/toxicity , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/physiology , Female , Larva/drug effects , Larva/growth & development , Larva/physiology , Male , Ovum/drug effects , Paracentrotus/embryology , Paracentrotus/growth & development , Paracentrotus/physiology , Silver/toxicity , Spermatozoa/drug effects , Titanium/toxicity
19.
Cogn Process ; 13 Suppl 2: 541-50, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22872508

ABSTRACT

Human beings seem to be able to recognize emotions from speech very well and information communication technology aims to implement machines and agents that can do the same. However, to be able to automatically recognize affective states from speech signals, it is necessary to solve two main technological problems. The former concerns the identification of effective and efficient processing algorithms capable of capturing emotional acoustic features from speech sentences. The latter focuses on finding computational models able to classify, with an approximation as good as human listeners, a given set of emotional states. This paper will survey these topics and provide some insights for a holistic approach to the automatic analysis, recognition and synthesis of affective states.


Subject(s)
Algorithms , Artificial Intelligence , Emotions , Speech Acoustics , Speech Perception , Humans , Social Perception , Voice
20.
PLoS One ; 6(12): e27756, 2011.
Article in English | MEDLINE | ID: mdl-22174746

ABSTRACT

BACKGROUND: Most Yersinia pestis strains are known to express a capsule-like antigen, fraction 1 (F1)(.) F1 is encoded by the caf1 gene located on the large 100-kb pFra plasmid, which is found in Y. pestis but not in closely related species such as Yersinia enterocolytica and Yersinia pseudotuberculosis. In order to find antibodies specifically binding to Y. pestis we screened a large single chain Fv antibody fragment (scFv) phage display library using purified F1 antigen as a selection target. Different forms of the selected antibodies were used to establish assays for recombinant F1 antigen and Y. pestis detection. METHODS: Phage antibody panning was performed against F1 in an automated fashion using the Kingfisher magnetic bead system. Selected scFvs were screened for F1-binding specificity by one-step alkaline phosphatase enzyme linked immunosorbant assay (ELISA), and assayed for binding to recombinant antigen and/or Y. pestis by flow cytometry and whole-cell ELISA. RESULTS: Seven of the eight selected scFvs were shown to specifically bind both recombinant F1 and a panel of F1-positive Yersinia cells. The majority of the soluble scFvs were found to be difficult to purify, unstable and prone to cross-reactivity with F1-negative Yersinia strains, whereas phage displayed scFvs were found to be easy to purify/label and remarkably stable. Furthermore direct fluorescent labeling of phage displaying scFv allowed for an easy one-step flow cytometry assay. Slight cross-reactivity was observed when fixed cells were used in ELISA. CONCLUSIONS: Our high throughput methods of selection and screening allowed for time and cost effective discovery of seven scFvs specifically binding Y. pestis F1 antigen. We describe implementation of different methods for phage-based immunoassay. Based on the success of these methods and the proven stability of phage, we indicate that the use of phage-displayed, rather than phage-free proteins, might generally overcome the shortcomings of scFv antibodies.


Subject(s)
Antibodies, Bacterial/immunology , Bacteriophages , Peptide Library , Single-Chain Antibodies/immunology , Yersinia pestis/immunology , Yersinia pestis/isolation & purification , Amino Acid Sequence , Antibodies, Bacterial/analysis , Antibodies, Bacterial/genetics , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacteriophages/genetics , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Fluorescence , Indicators and Reagents , Molecular Sequence Data , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sequence Alignment , Single-Chain Antibodies/analysis , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...