Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38895451

ABSTRACT

Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and imaging of fluorescent indicators. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by simultaneously interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.

2.
Sci Adv ; 9(40): eadh0974, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37801492

ABSTRACT

Recording and modulating neural activity in vivo enables investigations of the neurophysiology underlying behavior and disease. However, there is a dearth of translational tools for simultaneous recording and localized receptor-specific modulation. We address this limitation by translating multifunctional fiber neurotechnology previously only available for rodent studies to enable cortical and subcortical neural recording and modulation in macaques. We record single-neuron and broader oscillatory activity during intracranial GABA infusions in the premotor cortex and putamen. By applying state-space models to characterize changes in electrophysiology, we uncover that neural activity evoked by a working memory task is reshaped by even a modest local inhibition. The recordings provide detailed insight into the electrophysiological effect of neurotransmitter receptor modulation in both cortical and subcortical structures in an awake macaque. Our results demonstrate a first-time application of multifunctional fibers for causal studies of neuronal activity in behaving nonhuman primates and pave the way for clinical translation of fiber-based neurotechnology.


Subject(s)
Neurophysiology , Wakefulness , Animals , Neurophysiology/methods , Macaca mulatta , Brain/physiology , Cognition
3.
Nat Biotechnol ; 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349522

ABSTRACT

Progress in understanding brain-viscera interoceptive signaling is hindered by a dearth of implantable devices suitable for probing both brain and peripheral organ neurophysiology during behavior. Here we describe multifunctional neural interfaces that combine the scalability and mechanical versatility of thermally drawn polymer-based fibers with the sophistication of microelectronic chips for organs as diverse as the brain and the gut. Our approach uses meters-long continuous fibers that can integrate light sources, electrodes, thermal sensors and microfluidic channels in a miniature footprint. Paired with custom-fabricated control modules, the fibers wirelessly deliver light for optogenetics and transfer data for physiological recording. We validate this technology by modulating the mesolimbic reward pathway in the mouse brain. We then apply the fibers in the anatomically challenging intestinal lumen and demonstrate wireless control of sensory epithelial cells that guide feeding behaviors. Finally, we show that optogenetic stimulation of vagal afferents from the intestinal lumen is sufficient to evoke a reward phenotype in untethered mice.

4.
Adv Mater ; 35(38): e2301916, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37269476

ABSTRACT

Broad adoption of magnetic soft robotics is hampered by the sophisticated field paradigms for their manipulation and the complexities in controlling multiple devices. Furthermore, high-throughput fabrication of such devices across spatial scales remains challenging. Here, advances in fiber-based actuators and magnetic elastomer composites are leveraged to create 3D magnetic soft robots controlled by unidirectional fields. Thermally drawn elastomeric fibers are instrumented with a magnetic composite synthesized to withstand strains exceeding 600%. A combination of strain and magnetization engineering in these fibers enables programming of 3D robots capable of crawling or walking in magnetic fields orthogonal to the plane of motion. Magnetic robots act as cargo carriers, and multiple robots can be controlled simultaneously and in opposing directions using a single stationary electromagnet. The scalable approach to fabrication and control of magnetic soft robots invites their future applications in constrained environments where complex fields cannot be readily deployed.

5.
Adv Funct Mater ; 31(43)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34924913

ABSTRACT

Fiber drawing enables scalable fabrication of multifunctional flexible fibers that integrate electrical, optical and microfluidic modalities to record and modulate neural activity. Constraints on thermomechanical properties of materials, however, have prevented integrated drawing of metal electrodes with low-loss polymer waveguides for concurrent electrical recording and optical neuromodulation. Here we introduce two fabrication approaches: (1) an iterative thermal drawing with a soft, low melting temperature (Tm) metal indium, and (2) a metal convergence drawing with traditionally non-drawable high Tm metal tungsten. Both approaches deliver multifunctional flexible neural interfaces with low-impedance metallic electrodes and low-loss waveguides, capable of recording optically-evoked and spontaneous neural activity in mice over several weeks. We couple these fibers with a light-weight mechanical microdrive (1g) that enables depth-specific interrogation of neural circuits in mice following chronic implantation. Finally, we demonstrate the compatibility of these fibers with magnetic resonance imaging (MRI) and apply them to visualize the delivery of chemical payloads through the integrated channels in real time. Together, these advances expand the domains of application of the fiber-based neural probes in neuroscience and neuroengineering.

6.
ACS Cent Sci ; 7(9): 1516-1523, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34584953

ABSTRACT

Thermal drawing has been recently leveraged to yield multifunctional, fiber-based neural probes at near kilometer length scales. Despite its promise, the widespread adoption of this approach has been impeded by (1) material compatibility requirements and (2) labor-intensive interfacing of functional features to external hardware. Furthermore, in multifunctional fibers, significant volume is occupied by passive polymer cladding that so far has only served structural or electrical insulation purposes. In this article, we report a rapid, robust, and modular approach to creating multifunctional fiber-based neural interfaces using a solvent evaporation or entrapment-driven (SEED) integration process. This process brings together electrical, optical, and microfluidic modalities all encased within a copolymer comprised of water-soluble poly(ethylene glycol) tethered to water-insoluble poly(urethane) (PU-PEG). We employ these devices for simultaneous optogenetics and electrophysiology and demonstrate that multifunctional neural probes can be used to deliver cellular cargo with high viability. Upon exposure to water, PU-PEG cladding spontaneously forms a hydrogel, which in addition to enabling integration of modalities, can harbor small molecules and nanomaterials that can be released into local tissue following implantation. We also synthesized a custom nanodroplet forming block polymer and demonstrated that embedding such materials within the hydrogel cladding of our probes enables delivery of hydrophobic small molecules in vitro and in vivo. Our approach widens the chemical toolbox and expands the capabilities of multifunctional neural interfaces.

7.
Angew Chem Int Ed Engl ; 60(33): 18295-18302, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34097813

ABSTRACT

Redox cofactors mediate many enzymatic processes and are increasingly employed in biomedical and energy applications. Exploring the influence of external magnetic fields on redox cofactor chemistry can enhance our understanding of magnetic-field-sensitive biological processes and allow the application of magnetic fields to modulate redox reactions involving cofactors. Through a combination of experiments and modeling, we investigate the influence of magnetic fields on electrochemical reactions in redox cofactor solutions. By employing flavin mononucleotide (FMN) cofactor as a model system, we characterize magnetically induced changes in Faradaic currents. We find that radical pair intermediates have negligible influence on current increases in FMN solution upon application of a magnetic field. The dominant mechanism underlying the observed current increases is the magneto-hydrodynamic effect. We extend our analyses to other diffusion-limited electrochemical reactions of redox cofactor solutions and arrive at similar conclusions, highlighting the opportunity to use this framework in redox cofactor chemistry.


Subject(s)
Electrochemical Techniques , Flavin Mononucleotide/chemistry , Hydrodynamics , Magnetic Fields , Oxidation-Reduction , Solutions
8.
Article in English | MEDLINE | ID: mdl-33899045

ABSTRACT

The disruption of conventional manufacturing, supply, and distribution channels during the COVID-19 pandemic caused widespread shortages in personal protective equipment (PPE) and other medical supplies. These shortages catalyzed local efforts to use nontraditional, rapid manufacturing to meet urgent healthcare needs. Here we present a crisis-responsive design framework designed to assist with product development under pandemic conditions. The framework emphasizes stakeholder engagement, comprehensive but efficient needs assessment, rapid manufacturing, and modified product testing to enable accelerated development of healthcare products. We contrast this framework with traditional medical device manufacturing that proceeds at a more deliberate pace, discuss strengths and weakness of pandemic-responsive fabrication, and consider relevant regulatory policies. We highlight the use of the crisis-responsive framework in a case study of face shield design and production for a large US academic hospital. Finally, we make recommendations aimed at improving future resilience to pandemics and healthcare emergencies. These include continued development of open source designs suitable for rapid manufacturing, education of maker communities and hospital administrators about rapidly-manufactured medical devices, and changes in regulatory policy that help strike a balance between quality and innovation.

9.
ACS Chem Neurosci ; 11(22): 3802-3813, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33108719

ABSTRACT

Photoswitchable ligands can add an optical switch to a target receptor or signaling cascade and enable reversible control of neural circuits. The application of this approach, termed photopharmacology, to behavioral experiments has been impeded by a lack of integrated hardware capable of delivering both light and compounds to deep brain regions in moving subjects. Here, we devise a hybrid photochemical genetic approach to target neurons using a photoswitchable agonist of the capsaicin receptor TRPV1, red-AzCA-4. Using multifunctional fibers with optical and microfluidic capabilities, we delivered a transgene coding for TRPV1 into the ventral tegmental area (VTA). This sensitized excitatory VTA neurons to red-AzCA-4, allowing us to optically control conditioned place preference in mice, thus extending applications of photopharmacology to behavioral experiments. Applied to endogenous receptors, our approach may accelerate future studies of molecular mechanisms underlying animal behavior.


Subject(s)
Neurons , Ventral Tegmental Area , Animals , Behavior, Animal , Conditioning, Classical , Ligands , Mice
10.
Med ; 1(1): 139-151.e4, 2020 12 18.
Article in English | MEDLINE | ID: mdl-32838357

ABSTRACT

BACKGROUND: Due to supply chain disruption, the COVID-19 pandemic has caused severe shortages in personal protective equipment for health care professionals. Local fabrication based on 3D printing is one way to address this challenge, particularly in the case of products such as protective face shields. No clear path exists, however, for introducing a locally fabricated product into a clinical setting. METHODS: We describe a research protocol under Institutional Review Board supervision that allowed clinicians to participate in an iterative design process followed by real-world testing in an emergency department. All designs, materials used, testing protocols, and survey results are reported in full to facilitate similar efforts in other clinical settings. FINDINGS: Clinical testing allowed the incident command team at a major academic medical center to introduce the locally fabricated face shield into general use in a rapid but well-controlled manner. Unlike standard hospital face shields, the locally fabricated design was intended to be reusable. We discuss the design and testing process and provide an overview of regulatory considerations associated with fabrication and testing of personal protective equipment, such as face shields. CONCLUSIONS: Our work serves as a case study for robust, local responses to pandemic-related disruption of medical supply chains with implications for health care professionals, hospital administrators, regulatory agencies, and concerned citizens in the COVID-19 and future health care emergencies. FUNDING: : This work was supported by the Harvard MIT Center for Regulatory Sciences, NIH/NCI grants U54-CA225088 and T32-GM007753, and the Harvard Ludwig Center. M.-J.A. is a Friends of McGovern Graduate Fellow.


Subject(s)
COVID-19 , Equipment and Supplies, Hospital/standards , Personal Protective Equipment/standards , COVID-19/epidemiology , COVID-19/prevention & control , Hospitals , Humans , Pandemics/prevention & control , SARS-CoV-2
11.
Nat Biotechnol ; 37(9): 1013-1023, 2019 09.
Article in English | MEDLINE | ID: mdl-31406326

ABSTRACT

Monitoring and modulating the diversity of signals used by neurons and glia in a closed-loop fashion is necessary to establish causative links between biochemical processes within the nervous system and observed behaviors. As developments in neural-interface hardware strive to keep pace with rapid progress in genetically encoded and synthetic reporters and modulators of neural activity, the integration of multiple functional features becomes a key requirement and a pressing challenge in the field of neural engineering. Electrical, optical and chemical approaches have been used to manipulate and record neuronal activity in vivo, with a recent focus on technologies that both integrate multiple modes of interaction with neurons into a single device and enable bidirectional communication with neural circuits with enhanced spatiotemporal precision. These technologies not only are facilitating a greater understanding of the brain, spinal cord and peripheral circuits in the context of health and disease, but also are informing the development of future closed-loop therapies for neurological, neuro-immune and neuroendocrine conditions.


Subject(s)
Brain/physiology , Diagnostic Techniques, Neurological , Electric Stimulation , Nerve Net/physiology , Humans , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...