Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 41(9): 2417-2430, 2021 09.
Article in English | MEDLINE | ID: mdl-34320837

ABSTRACT

Objective: Systemic lupus erythematosus (SLE) is associated to boosted atherosclerosis development and a higher cardiovascular disease risk. This study aimed to delineate the role of anti-double stranded DNA (anti-dsDNA) antibodies on the molecular profile and the activity of immune and vascular cells, as well as on their enhanced cardiovascular risk. Approach and Results: Eighty SLE patients were included. Extensive clinical/analytical evaluation was performed, including cardiovascular disease parameters (endothelial function, proatherogenic dyslipidemia, and carotid intima-media thickness). Gene and protein expression profiles were evaluated in monocytes from patients diagnosed positive or negative for anti-dsDNA antibodies by using NanoString and cytokine arrays, respectively. NETosis and circulating inflammatory profile was assessed in both neutrophils and plasma. Positivity and persistence of anti-dsDNA antibodies in SLE patients were associated to endothelial dysfunction, proatherogenic dyslipidemia, and accelerated atherosclerosis. In parallel, anti-dsDNA antibodies were linked to the aberrant activation of innate immune cells, so that anti-dsDNA(+) SLE monocytes showed distinctive gene and protein expression/activity profiles, and neutrophils were more prone to suffer NETosis in comparison with anti-dsDNA(−) patients. Anti-dsDNA(+) patients further displayed altered levels of numerous circulating mediators related to inflammation, NETosis, and cardiovascular risk. In vitro, Ig-dsDNA promoted NETosis on neutrophils, apoptosis on monocytes, modulated the expression of inflammation and thrombosis-related molecules, and induced endothelial activation, at least partially, by FcR (Fc receptor)-binding mechanisms. Conclusions: Anti-dsDNA antibodies increase the cardiovascular risk of SLE patients by altering key molecular processes that drive a distinctive and coordinated immune and vascular activation, representing a potential tool in the management of this comorbidity.


Subject(s)
Antibodies, Antinuclear/blood , Cardiovascular Diseases/immunology , DNA/immunology , Endothelial Cells/immunology , Immunoglobulin G/blood , Leukocytes/immunology , Lupus Erythematosus, Systemic/immunology , Adult , Apoptosis , Biomarkers/blood , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/genetics , Cells, Cultured , Coculture Techniques , Cross-Sectional Studies , Cytokines/genetics , Cytokines/metabolism , Endothelial Cells/metabolism , Extracellular Traps/metabolism , Female , Heart Disease Risk Factors , Humans , Leukocytes/metabolism , Lipids/blood , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/genetics , Male , Middle Aged , Monocytes/immunology , Monocytes/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Oxidative Stress , Retrospective Studies , Risk Assessment , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...