Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 195: 106340, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232436

ABSTRACT

In recent years, the region surrounding Sepetiba Bay (SB; SE Brazil) has become a hub of intense urban expansion and economic exploitation in response to ore transport and industrial and port activities. As a result, contaminants have been introduced into the bay, leading to an overall worsening of the environmental quality. The present work applies for the first time a foraminiferal morphology-based approach (M) and eDNA-based metabarcoding sequencing (G), along with geochemical data to assess the ecological quality status (EcoQS) in the SB. Principal component analysis shows that the eDNA and morphospecies diversity as well as most of the taxa relative abundance decline in response to the environmental stress (ES) gradient related to total organic carbon (TOC) and metal pollution. Based on ecological indices, Exp(H'bc) (G), Exp(H'bc) (M), foraminifera ATZI marine biotic index (Foram-AMBI), Foram Stress Index (FSI), and geochemical indices (TOC and Potential Ecological Risk Index), the lowest values of EcoQS (i.e., bad to moderate) are inferred in the innermost part of the SB. Despite minor discrepancies among the six EcoQS indices, an agreement has been found for 63% of the stations. To improve the agreement between the ecological indices, it is necessary to fill the gap in species ecology; information on the ecology of many species is still unknown. This work reinforces the importance of molecular analysis and morphological methods in environmental impact studies and confirms the reliability of foraminiferal metabarcoding in EcoQS assessment. This is the first study evaluating the EcoQS in the South Atlantic by using combined foraminiferal eDNA metabarcoding with morphological data.


Subject(s)
Foraminifera , Foraminifera/genetics , Environmental Monitoring/methods , Brazil , Bays , Reproducibility of Results , Biodiversity , Geologic Sediments/chemistry
2.
Environ Pollut ; 320: 121003, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36623785

ABSTRACT

Using benthic foraminifera, we evaluate the ecological quality status (EcoQS) of transitional waters of the Guanabara Bay (SE Brazil) by applying the diversity-based index exp (H'bc) and the sensitivity-based Foram-AMBI for the first time in South America. The Guanabara Bay was selected for this study as it is one of the largest transitional ecosystems in the State of Rio de Janeiro and has been severely impacted by anthropogenic activities. Concentrations of potentially toxic elements (PTEs) were assessed by sequential chemical extraction in three phases (i.e., dissolved in water, adsorbed on organic matter, and Mn oxy-hydroxides). Total organic carbon, total nitrogen, and stable isotope (δ13C and δ15N) signatures of organic matter were analyzed to trace environmental stress. The Ammonia/Elphidium ratio suggests hypoxic conditions at most of the sampled sites. Principal component analysis identifies the first component as environmental stress underlying organic matter and PTE enrichment (in all three phases), which is positively related to Foram-AMBI and negatively to exp (H'bc). The exp (H'bc) and Foram-AMBI indices reveal that stations near the Governador Island and Niterói margin have the worst EcoQS, showing medium to extreme pollution. Additionally, Foram-AMBI and exp (H'bc) provide a congruent EcoQS classification for ∼64% of the sites. Although these results are promising, they suggest that a significant effort should be made to obtain better knowledge of foraminiferal ecological requirements to employ benthic foraminifera as a biomonitoring and management method.


Subject(s)
Foraminifera , Water Pollutants, Chemical , Geologic Sediments/analysis , Ecosystem , Bays , Brazil , Environmental Monitoring/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
3.
Appl Spectrosc ; 76(12): 1440-1451, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36065937

ABSTRACT

Lead, like other trace elements, is incorporated in the growing bands of bivalve shells. The chemicals stored into the shells can provide valuable information about seawater conditions during the period of shell formation. In this study, we present a practical approach to determine Pb isotopic signatures in bivalve shells as a tool for evaluating lead pollution in coastal waters. To demonstrate the applicability of the method, Pb isotopic fingerprinting in bivalve shell layers were investigated using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Lead isotope ratios (208Pb/206Pb and 206Pb/207Pb) were measured along distinct sections of the maximum growth axis of the shells. Calibration and quantification of Pb isotopes were performed using NIST 612 as reference material. Our results demonstrated that Pb isotope ratios in the shells ranged from 1.143 to 1.201 for 206Pb/207Pb and from 2.061 to 2.161 for 208Pb/206Pb. The isotopic signatures recorded in the sample shells correspond to similar ranges of Pb signatures reported for marine sediments from the same study area. In general, this work shows that LA-MC-ICP-MS is a suitable technique for determining spatially resolved lead isotopic signatures in bivalve shells and that it can be used to estimate the origin of Pb pollution in aquatic environments.


Subject(s)
Bivalvia , Laser Therapy , Animals , Lead , Mass Spectrometry/methods , Isotopes/analysis , Bivalvia/chemistry
4.
Environ Sci Pollut Res Int ; 29(46): 69652-69679, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35576033

ABSTRACT

We analyze potential Late Holocene metal contamination along a sediment core collected in the distal zone of Ria de Vigo (North Spain). Statistical treatment of the dataset based on a multiproxy approach enabled us to identify and disentangle factors influencing the depositional processes and the preservation of the records of this activity in the area over the last ≈3000 years BP. Some layers of the analyzed core have significant enrichment in Cu and a moderate enrichment in Ag, Mo, As, Sb, S, Zn, Ni, Sn, Cd, Cr, Co, Pb, and Li. The enrichment of these elements in some layers of this core may be related to mining activities that have taken place since classical times in the region. Successive phases of pollution were identified along the core KSGX24 related to the Late Bronze Age (≈3000-2450 years BP), Iron Age (≈2450-1850 years BP), Roman times (≈1850-1550 years BP), Middle Ages (≈1250-500 years BP), and industrial and modern (≈250-0 years BP) anthropic activities. The protection of the Cies Islands, the erosive and transport capacity of the rivers in the region, oscillations of the oceanographic and climatic regime, atmospheric contamination, and diagenetic sedimentary processes might have contributed to the accumulation and preservation of this record in the distal region of the Ria de Vigo. The studied core shows that the industrial and preindustrial anthropic impacts caused an environmental liability and contributed to the presence of moderate to heavy pollution of various metals in surface and subsurface sediment layers in the distal sector of the Ria de Vigo, which could be a hazard to biota.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Cadmium , Environmental Monitoring , Geologic Sediments , Lead , Metals, Heavy/analysis , Rivers , Spain , Water Pollutants, Chemical/analysis
5.
Biol Lett ; 10(7)2014 Jul.
Article in English | MEDLINE | ID: mdl-25079494

ABSTRACT

We report a new pleurodiran turtle from the Barremian Morro do Chaves Formation, Sergipe-Alagoas Basin, Brazil. We tested the phylogenetic position of Atolchelys lepida gen. et sp. nov. by including it in a comprehensive cladistic analysis of pleurodires. The new species is a basal member of Bothremydidae and simultaneously the oldest unambiguous crown Pleurodira. The biogeographic and chronostratigraphic significance of the finding has implications for the calibration of molecular clocks studies by pushing back the minimum age of crown Pleurodira by more than 12 Ma (ca 125 Ma). The reanalysis of Pelomedusoides relationships provides evidence that the early evolution and relationships among the main lineages of side-necked turtles can be explained, at least partially, by a sequence of vicariance events.


Subject(s)
Biological Evolution , Fossils , Turtles/classification , Animals , Brazil , Phylogeny , Turtles/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...