Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Mol Phylogenet Evol ; 197: 108091, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38719080

ABSTRACT

Cryptic diversity poses a great obstacle in our attempts to assess the current biodiversity crisis and may hamper conservation efforts. The gekkonid genus Mediodactylus, a well-known case of hidden species and genetic diversity, has been taxonomically reclassified several times during the last decade. Focusing on the Mediterranean populations, a recent study within the M. kotschyi species complex using classic mtDNA/nuDNA markers suggested the existence of five distinct species, some being endemic and some possibly threatened, yet their relationships have not been fully resolved. Here, we generated genome-wide SNPs (using ddRADseq) and applied molecular species delimitation approaches and population genomic analyses to further disentangle these relationships. Τhe most extensive nuclear dataset, so far, encompassing 2,360 loci and âˆ¼ 699,000 bp from across the genome of Mediodactylus gecko, enabled us to resolve previously obscure phylogenetic relationships among the five, recently elevated, Mediodactylus species and to support the hypothesis that the taxon includes several new, undescribed species. Population genomic analyses within each of the proposed species showed strong genetic structure and high levels of genetic differentiation among populations.


Subject(s)
Lizards , Phylogeny , Phylogeography , Animals , Mediterranean Region , Lizards/genetics , Lizards/classification , Polymorphism, Single Nucleotide , Genetic Variation , Genetics, Population , DNA, Mitochondrial/genetics , Sequence Analysis, DNA
2.
Mol Ecol ; 33(1): e17190, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37909668

ABSTRACT

After the domestication of goats around 10,000 years before the present (BP), humans transported goats far beyond the range of their wild ancestor, the bezoar goat. This brought domestic goats into contact with many wild goat species such as ibex and markhor, enabling introgression between domestic and wild goats. To investigate this, while shedding light on the taxonomic status of wild and domestic goats, we analysed genome-wide SNP data of 613 specimens from 14 taxonomic units, including Capra hircus, C. pyrenaica, C. ibex (from Switzerland, Austria, Germany and Slovenia), C. aegagrus aegagrus, C. a. cretica, C. h. dorcas, C. caucasica caucasica, C. c. severtzovi, C. c. cylindricornis, C. falconeri, C. sibirica sibirica, C. s. alaiana and C. nubiana, as well as Oreamnos americanus (mountain goat) as an outgroup. To trace gene flow between domestic and wild goats, we integrated genotype data of local goat breeds from the Alps as well as from countries such as Spain, Greece, Türkiye, Egypt, Sudan, Iran, Russia (Caucasus and Altai) and Pakistan. Our phylogenetic analyses displayed a clear separation between bezoar-type and ibex-type clades with wild goats from the Greek islands of Crete and Youra clustered within domestic goats, confirming their feral origin. Our analyses also revealed gene flow between the lineages of Caucasian tur and domestic goats that most likely occurred before or during early domestication. Within the clade of domestic goats, analyses inferred gene flow between African and Iberian goats. The detected events of introgression were consistent with previous reports and offered interesting insights into the historical relationships among domestic and wild goats.


Subject(s)
Bezoars , Animals , Humans , Phylogeny , Genotype , Bezoars/genetics , Goats/genetics , Genome/genetics
3.
Mol Ecol ; 32(7): 1608-1628, 2023 04.
Article in English | MEDLINE | ID: mdl-36596297

ABSTRACT

By evaluating genetic variation across the entire genome, one can address existing questions in a novel way while raising new ones. The latter includes how different local environments influence adaptive and neutral genomic variation within and among populations, providing insights into local adaptation of natural populations and their responses to global change. Here, under a seascape genomic approach, ddRAD data of 4609 single nucleotide polymorphisms (SNPs) from 398 sardines (Sardina pilchardus) collected in 11 Mediterranean and one Atlantic site were generated. These were used along with oceanographic and ecological information to detect signals of adaptive divergence with gene flow across environmental gradients. The studied sardines constitute two clusters (FST  = 0.07), a pattern attributed to outlier loci, highlighting putative local adaptation. The trend in the number of days with sea surface temperature above 19°C, a critical threshold for successful sardine spawning, was crucial at all levels of population structuring with implications on the species' key biological processes. Outliers link candidate SNPs to the region's environmental heterogeneity. Our findings provide evidence for a dynamic equilibrium in which population structure is maintained by physical and ecological factors under the opposing influences of migration and selection. This dynamic in a natural system warrants continuous monitoring under a seascape genomic approach that might benefit from a temporal and more detailed spatial dimension. Our results may contribute to complementary studies aimed at providing deeper insights into the mechanistic processes underlying population structuring. Those are key to understanding and predicting future changes and responses of this highly exploited species in the face of climate change.


Subject(s)
Genetics, Population , Genomics , Mediterranean Sea , Genome , Adaptation, Physiological/genetics , Polymorphism, Single Nucleotide/genetics
4.
Mol Phylogenet Evol ; 175: 107585, 2022 10.
Article in English | MEDLINE | ID: mdl-35810970

ABSTRACT

Understanding intra-island patterns of evolutionary divergence, including cases of cryptic diversity, is a crucial step towards deciphering speciation processes. Cyprus is an oceanic island isolated for at least 5.3 Mya from surrounding continental regions, while it remains unclear whether it was ever connected to the mainland, even during the Messinian Salinity Crisis. The terrestrial isopod species Armadillo officinalis, that is widespread across the Mediterranean, offers the opportunity to explore intra-island divergence patterns that might exhibit geographical structure related also to the region's known paleogeography. Genome-wide ddRADseq, as well as Sanger sequencing for four mitochondrial and three nuclear loci data were generated for this purpose. In total, 71 populations from Cyprus, neighbouring continental sites, i.e., Israel, Lebanon and Turkey, and other Mediterranean regions, i.e. Greece, Italy, and Tunisia, were included in the analysis. Phylogenetic reconstructions and population structure analyses support the existence of at least six genetically discrete groups across the study area. Five of these distinct genetic clades occur on Cyprus, four of which are endemic to the island and one is widely distributed along the circum-Mediterranean countries. The sixth clade is distributed in Israel. The closest evolutionary relationship of endemic Cypriot populations is with those from Israel, while the evolutionary clade that is present in countries all around the Mediterranean is very shallow. Cladochronological analyses date the origin of the species on the island at ∼6 Mya. Estimated f4 and D statistics as well as FST values indicate the genetic isolation between the populations sampled from Cyprus and surrounding continental areas, while there is evident gene flow among populations within the island. Species delimitation and population genetic metrics support the existence of three distinct taxonomic units across the study area, two of which occur on the island and correspond to the endemic clade and the widespread circum-Mediterranean one, respectively, while the third corresponds to Israel's clade. The islands' paleogeographic history and recent human activities seem to have shaped current patterns of genetic diversity in this group of species.


Subject(s)
Isopoda , Animals , Biological Evolution , DNA, Mitochondrial/genetics , Gene Flow , Genetic Variation , Genetics, Population , Humans , Isopoda/genetics , Phylogeny
5.
Gigascience ; 10(8)2021 08 18.
Article in English | MEDLINE | ID: mdl-34405237

ABSTRACT

High-performance computing (HPC) systems have become indispensable for modern marine research, providing support to an increasing number and diversity of users. Pairing with the impetus offered by high-throughput methods to key areas such as non-model organism studies, their operation continuously evolves to meet the corresponding computational challenges. Here, we present a Tier 2 (regional) HPC facility, operating for over a decade at the Institute of Marine Biology, Biotechnology, and Aquaculture of the Hellenic Centre for Marine Research in Greece. Strategic choices made in design and upgrades aimed to strike a balance between depth (the need for a few high-memory nodes) and breadth (a number of slimmer nodes), as dictated by the idiosyncrasy of the supported research. Qualitative computational requirement analysis of the latter revealed the diversity of marine fields, methods, and approaches adopted to translate data into knowledge. In addition, hardware and software architectures, usage statistics, policy, and user management aspects of the facility are presented. Drawing upon the last decade's experience from the different levels of operation of the Institute of Marine Biology, Biotechnology, and Aquaculture HPC facility, a number of lessons are presented; these have contributed to the facility's future directions in light of emerging distribution technologies (e.g., containers) and Research Infrastructure evolution. In combination with detailed knowledge of the facility usage and its upcoming upgrade, future collaborations in marine research and beyond are envisioned.


Subject(s)
Computing Methodologies , Marine Biology , Aquaculture/methods , Biotechnology/methods , Marine Biology/methods , Software
6.
Mol Phylogenet Evol ; 159: 107121, 2021 06.
Article in English | MEDLINE | ID: mdl-33609707

ABSTRACT

Wall lizards of the genus Podarcis (Sauria, Lacertidae) are the predominant reptile group in southern Europe, including 24 recognized species. Mitochondrial DNA data have shown that, with the exception of P. muralis, the Podarcis species distributed in the Balkan peninsula form a species group that is further sub-divided into two subgroups: the one of "P. tauricus" consisting of P. tauricus, P. milensis, P. gaigeae, and P. melisellensis, and the other of "P. erhardii" comprising P. erhardii, P. levendis, P. cretensis, and P. peloponnesiacus. In an attempt to explore the Balkan Podarcis phylogenomic relationships, assess the levels of genetic structure and to re-evaluate the number of extant species, we employed phylogenomic and admixture approaches on ddRADseq (double digested Restriction site Associated DNA sequencing) genomic data. With this efficient Next Generation Sequencing approach, we were able to obtain a large number of genomic loci randomly distributed throughout the genome and use them to resolve the previously obscure phylogenetic relationships among the different Podarcis species distributed in the Balkans. The obtained phylogenomic relationships support the monophyly of both aforementioned subgroups and revealed several divergent lineages within each subgroup, stressing the need for taxonomic re-evaluation of Podarcis' species in Balkans. The phylogenomic trees and the species delimitation analyses confirmed all recently recognized species (P. levendis, P. cretensis, and P. ionicus) and showed the presence of at least two more species, one in P. erhardii and the other in P. peloponnesiacus.


Subject(s)
Genetic Speciation , Genetics, Population , Lizards/classification , Phylogeny , Animals , Balkan Peninsula , DNA, Mitochondrial/genetics , Genomics , Metagenomics , Sequence Analysis, DNA
8.
Mol Phylogenet Evol ; 138: 193-204, 2019 09.
Article in English | MEDLINE | ID: mdl-31129348

ABSTRACT

The evolutionary history of taxa with limited overseas dispersal abilities is considered to be majorly influenced by vicariant events constituting them as model organisms for the interpretation of evolutionary processes. An excellent candidate are the wall lizards of the genus Podarcis exhibiting an impressive level of genetic and morphological diversification and harboring several cases of recently discovered cryptic diversity. In this study, we investigated the effect of palaeogeographic events on the wall lizards' biodiversity patterns in the Aegean (Greece) as well as the evolutionary processes that acted both in space and time. To accomplish that we studied a group of three endemic Podarcis species (i.e., P. cretensis, P. levendis, and P. peloponnesiacus) both at the intra and interspecific levels employing mitochondrial and nuclear DNA sequence data as well as microsatellites. Furthermore, presence information coupled with bioclimatic data (i.e., species distribution modeling, and niche similarity analyses) shed light on the necessary ecological factors for the species' occurrence. These approaches revealed yet another case of cryptic diversity for this group of lizards, with the existence of two slightly overlapping lineages within P. peloponnesiacus and highly structured populations within P. cretensis. Species diversification occurred during the Pliocene with P. peloponnesiacus divergence into the two lineages dating back to 1.86 Mya. Furthermore, temperature and precipitation related environmental parameters were the most important ones regarding the current distribution of the studied species. Based on the results, we propose a more detailed phylogeographic scenario where both the paleogeography of the area and several environmental parameters have shaped the genetic diversity and the current distribution pattern of this species group.


Subject(s)
Lizards/classification , Phylogeny , Phylogeography , Animals , Balkan Peninsula , Biodiversity , DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Greece , Lizards/genetics , Microsatellite Repeats/genetics , Species Specificity , Time Factors
9.
Mol Phylogenet Evol ; 129: 325-337, 2018 12.
Article in English | MEDLINE | ID: mdl-30218775

ABSTRACT

Natural interspecific hybridization might be more important for the evolutionary history and speciation of animals than previously thought, considering several demographic and life history traits as well as habitat disturbance as factors that promote it. In this aspect, cetaceans comprise an interesting case in which the occurrence of sympatric species in mixed associations provides excellent opportunities for interspecific sexual interaction and the potential for hybridization. Here, we present evidence of natural hybridization for two cetacean species commonly occurring in the Greek Seas (Stenella coeruleoalba and Delphinus delphis), which naturally overlap in the Gulf of Corinth by analyzing highly resolving microsatellite DNA markers and mitochondrial DNA sequences in skin samples from 45 individuals of S. coeruleoalba, 12 D. delphis and three intermediate morphs. Employing several phylogenetic and population genetic approaches, we found 15 individuals that are potential hybrids including the three intermediate morphs, verifying the occurrence of natural hybridization between species of different genera. Their hybrids are fertile and able to reproduce not only with the other hybrids but also with each of the two-parental species. However, current evidence does not allow firm conclusions whether hybridization might constitute a step towards the generation of a new species and/or the swan song of an already existing species (i.e., D. delphis). Given that the focal species form mixed pods in several areas of Mediterranean, this study is an excellent opportunity to understand the mechanisms leading to hybridization in the context of gene flow and urges for the evaluation of the genetic status of common dolphins in the Mediterranean.


Subject(s)
Common Dolphins/genetics , Hybridization, Genetic , Oceans and Seas , Stenella/genetics , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Geography , Greece , Microsatellite Repeats/genetics , Phylogeny , Sex Determination Processes/genetics
10.
Mol Phylogenet Evol ; 125: 100-115, 2018 08.
Article in English | MEDLINE | ID: mdl-29574273

ABSTRACT

The Balkan Peninsula constitutes a biodiversity hotspot with high levels of species richness and endemism. The complex geological history of the Balkans in conjunction with the climate evolution are hypothesized as the main drivers generating this biodiversity. We investigated the phylogeography, historical demography, and population structure of closely related wall-lizard species from the Balkan Peninsula and southeastern Europe to better understand diversification processes of species with limited dispersal ability, from Late Miocene to the Holocene. We used several analytical methods integrating genome-wide SNPs (ddRADseq), microsatellites, mitochondrial and nuclear DNA data, as well as species distribution modelling. Phylogenomic analysis resulted in a completely resolved species level phylogeny, population level analyses confirmed the existence of at least two cryptic evolutionary lineages and extensive within species genetic structuring. Divergence time estimations indicated that the Messinian Salinity Crisis played a key role in shaping patterns of species divergence, whereas intraspecific genetic structuring was mainly driven by Pliocene tectonic events and Quaternary climatic oscillations. The present work highlights the effectiveness of utilizing multiple methods and data types coupled with extensive geographic sampling to uncover the evolutionary processes that shaped the species over space and time.


Subject(s)
Lizards/classification , Models, Biological , Phylogeography , Animals , Balkan Peninsula , Bayes Theorem , Biodiversity , Calibration , DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Genomics , Haplotypes/genetics , Lizards/genetics , Microsatellite Repeats/genetics , Phylogeny , Species Specificity
11.
J Biol Res (Thessalon) ; 24: 3, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28239596

ABSTRACT

BACKGROUND: Elucidating the patterns of the Atlantic Bluefin tuna [ABFT, Thunnus thynnus (Linnaeus, 1758)] population structure constitutes a challenging task of great importance. Most of the unique challenges stem from its biology, as well as the attributes of the marine realm in which it disperses. Accurate information is urgently needed for stock assessment, and the identification of critical features to the persistence and adaptation of populations in order to formulate and adopt effective strategies for ABFT conservation and management. Conclusions of a great number of ABFT genetic studies on the Mediterranean Sea stock structure are rather controversial and not yet conclusive. In this study, ABFT genomic diversity was investigated in the Mediterranean Sea, which is the most important area for the species' reproduction. RESULTS: Analyzing genome-wide SNPs and microsatellites from ABFT samples collected throughout the Mediterranean Sea did not provide strong evidence of genetic structure, pointing towards the existence of a single panmictic unit. An alternative view would recognize a failure to reject the null hypothesis of a panmictic unit as an effect of the study's sampling design, the type of markers used, and the effectiveness/suitability of analysis methods in respect to the species biological characteristics or any combination of the above. CONCLUSIONS: Unravelling the drivers of ABFT population diversity would require the consideration of important aspects of the species spawning behavior for the determination of the appropriate sampling design. Novel approaches and methods of analysis that will bring together experts in genetics/-omics, ecology and oceanography are deemed necessary. Analyzing ABFT genetic data under the discipline of seascape genetics could provide the analysis framework under which major abiotic and biotic forces controlling ABFT recruitment could be identified, elucidating the complicated population dynamics of the species, while multiple and continuous fisheries monitoring should in all cases be considered as a prerequisite in order to achieve efficient and long-term ABFT conservation.

12.
Mol Phylogenet Evol ; 106: 6-17, 2017 01.
Article in English | MEDLINE | ID: mdl-27640951

ABSTRACT

The monophyletic species subgroup of Podarcis tauricus is distributed in the western and southern parts of the Balkans, and includes four species with unresolved and unstudied inter- and intra-specific phylogenetic relationships. Using sequence data from two mitochondrial and three nuclear genes and applying several phylogenetic methods and species delimitation approaches to an extensive dataset, we have reconstructed the phylogeny of the Podarcis wall lizards in the Balkans, and re-investigated the taxonomic status of the P. tauricus species subgroup. Multilocus analyses revealed that the aforementioned subgroup consists of five major clades, with P. melisellensis as its most basal taxon. Monophyly of P. tauricus sensu stricto is not supported, with one of the subspecies (P. t. ionicus) displaying great genetic diversity (hidden diversity or cryptic species). It comprises five, geographically distinct, subclades with genetic distances on the species level. Species delimitation approaches revealed nine species within the P. tauricus species subgroup (P. melisellensis, P. gaigeae, P. milensis, and six in the P. tauricus complex), underlining the necessity of taxonomic re-evaluation. We thus synonymize some previously recognized subspecies in this subgroup, elevate P. t. tauricus and P. g. gaigeae to the species level and suggest a distinct Albanian-Greek clade, provisionally named as the P. ionicus species complex. The latter clade comprises five unconfirmed candidate species that call for comprehensive studies in the future.


Subject(s)
Lizards/classification , Animals , Balkan Peninsula , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , DNA, Mitochondrial/classification , DNA, Mitochondrial/genetics , Genetic Variation , Lizards/genetics , Phylogeny , Phylogeography , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
13.
Genetica ; 141(1-3): 23-40, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23381134

ABSTRACT

The European hare populations of the Balkan Peninsula comprise two divergent phylogenetic lineages with discrete geographical distribution slightly overlapping in the area of northeastern Greece and Bulgaria. Here we elucidate their contact zone, by defining the spatial distributional pattern of the two highly divergent groups, detecting individuals of hybrid origin, and identifying genetic barriers present in the area of their co-existence. Specimens from northeastern Greece were assayed for lineage assignment and population genetic inference based on a 511 bp fragment of mitochondrial DNA control region and allelic data from 10 microsatellite loci. Bayesian analyses on original and simulated genotypes were performed allowing for the contact zone delineation. Our results indicate high genetic diversity in both nuclear and mitochondrial DNA, strong population structure and non random spatial distribution of the differentiated gene pools. The information provided by the two types of molecular markers yielded consistent results. This study comprises a fine scale analysis of the contact zone between the two evolutionary lineages of European brown hares in northeastern Greece. Specific questions on the spatial patterns where addressed for the first time. Furthermore, hypotheses regarding the presence of hybrids were also tested. As a result, interpretive power to the diversity patterns observed today in the Balkans was added and previously overlooked aspects of the species biology were highlighted.


Subject(s)
Ecosystem , Genetic Speciation , Hares/genetics , Animals , DNA, Mitochondrial/genetics , Gene Flow , Genotype , Greece , Microsatellite Repeats/genetics , Polymorphism, Genetic , Population/genetics
14.
Zookeys ; (229): 53-110, 2012.
Article in English | MEDLINE | ID: mdl-23166474

ABSTRACT

Atyaephyra de Brito Capello, 1867 was described from the Mediterranean region almost 200 years ago. Since then, the genus has been recorded from various freshwater habitats in Europe, North Africa and the Middle East. Despite its long history, the taxonomic status of Atyaephyra species remains confusing and uncertain. Consequently numerous specimens from the known range of Atyaephyra were analysed using morphological characters and mitochondrial COI sequences in an attempt to clarify the taxonomy of this genus. The present study recognises seven Atyaephyra species, more than twice as many as previously recorded (three), four of which are considered as new. The new species are described, additional information to the original descriptions are provided for the remaining three taxa, while neotypes of Atyaephyra desmarestii Millet, 1831 and Atyaephyra stankoi Karaman, 1972 are designated to stabilize their taxonomy. Non-overlapping distinguishing morphological characters are used to discriminate the examined material into five species, e.g., Atyaephyra desmarestii, Atyaephyra stankoi, Atyaephyra orientalis Bouvier, 1913, Atyaephyra thyamisensissp. n., Atyaephyra strymonensissp. n. In addition, the genetic analysis supports the existence of multiple phylogenetic clades in the broader Mediterranean area and distinguishes two new cryptic species, namely Atyaephyra tuerkayisp. n. and Atyaephyra acheronensissp. n. The geographic distribution of these species is confirmed and their phylogenetic relationships are described.

15.
PLoS One ; 5(9): e12620, 2010 Sep 07.
Article in English | MEDLINE | ID: mdl-20838643

ABSTRACT

BACKGROUND: International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. METHODOLOGY/PRINCIPAL FINDINGS: This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. CONCLUSIONS/SIGNIFICANCE: Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.


Subject(s)
Fishes/classification , Fishes/genetics , Animals , Cytochromes b/genetics , DNA/genetics , DNA Barcoding, Taxonomic , DNA, Ribosomal/genetics , Electron Transport Complex IV/genetics , Fish Proteins/genetics , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...