Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Type of study
Publication year range
1.
Biomimetics (Basel) ; 9(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38248604

ABSTRACT

The occurrence of bone disorders is steadily increasing worldwide. Bone tissue engineering (BTE) has emerged as a promising alternative to conventional treatments of bone defects, developing bone scaffolds capable of promoting bone regeneration. In this research, biomimetic scaffolds based on ion-substituted calcium phosphates, derived from cuttlefish bone, were prepared using a hydrothermal method. To synthesize Mn2+-substituted scaffolds, three different manganese concentrations (corresponding to 1, 2.5, and 5 mol% Mn substitutions for Ca into hydroxyapatite) were used. Also, syntheses with the simultaneous addition of an equimolar amount (1 mol%) of two (Mg2+ and Sr2+) or three ions (Mn2+, Mg2+, and Sr2+) were performed. A chemical, structural, and morphological characterization was carried out using X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The effects of the ion substitutions on the lattice parameters, crystallite sizes, and fractions of the detected phases were discussed. Multi-substituted (Mn2+, Mg2+, and Sr2+) scaffolds were coated with polycaprolactone (PCL) using simple vacuum impregnation. The differentiation of human mesenchymal stem cells (hMSCs), cultured on the PCL-coated scaffold, was evaluated using histology, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction analyses. The expression of collagen I, alkaline phosphatase, and dentin matrix protein 1 was detected. The influence of PCL coating on hMSCs behavior is discussed.

2.
Carbohydr Polym ; 277: 118883, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34893286

ABSTRACT

Ionic substitutions are a promising strategy to enhance the biological performance of calcium phosphates (CaP) and composite materials for bone tissue engineering applications. However, systematic studies have not been performed on multi-substituted organic/inorganic scaffolds. In this work, highly porous composite scaffolds based on CaPs substituted with Sr2+, Mg2+, Zn2+ and SeO32- ions, and chitosan have been prepared by freeze-gelation technique. The scaffolds have shown highly porous structure, with very well interconnected pores and homogeneously dispersed CaPs, and high stability during 28 days in the degradation medium. Osteogenic potential of human mesenchymal stem cells seeded on scaffolds has been determined by histological, immunohistochemical and RT-qPCR analysis of cultured cells in static and dynamic conditions. Results indicated that ionic substitutions have a beneficial effect on cells and tissues. The scaffolds with multi-substituted CaPs have shown increased expression of osteogenesis related markers and increased phosphate deposits, compared to the scaffolds with non-substituted CaPs.


Subject(s)
Calcium Phosphates/pharmacology , Chitosan/pharmacology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Tissue Scaffolds/chemistry , Calcium Phosphates/chemistry , Cell Differentiation/drug effects , Cells, Cultured , Chitosan/chemistry , Humans , Tissue Engineering
3.
Acta Pharm ; 72(4): 599-613, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36651364

ABSTRACT

Stagnation in novelties of osteosarcoma (OS) treatment indicates the need for new therapeutic methods. OS cancer stem cells (OS-CSC) are taught to have the ability to self-renew and develop mechanisms of anticancer drug resistance, and this is why it is difficult to eradicate them. Their metabolism has been recognized as a potential target of therapeutic action. Ascorbic acid (AA) is considered to act pro-oxidative against OS-CSC in vitro by oxidative effect and by inhibition of glycolysis. This study examined an in vitro impact of AA on OS-CSC metabolism isolated from patients' biopsies, with the aim of better understanding of OS-CSC metabolism and the action of AA on OS-CSC. OS-CSC were isolated using a sphere culture system and identified as stem cells using Hoechst 33342 exclusion assay. Determination of the dominant type of metabolism of OS-CSC, parental OS cells, human mesenchymal stem cells (hMSC) and U2OS OS lineage before and after AA treatment was done by Seahorse XF (Agilent). Cytotoxicity of high-dose AA was confirmed by the MTT test and was proven for all the examined cell types as well as HEK293. Seahorse technology showed that OS-CSC can potentially use both glycolysis and oxidative phosphorylation (OXPHOS), and can turn to glycolysis and slow metabolic potential in unfavorable conditions such as incubation in AA.


Subject(s)
Antineoplastic Agents , Osteosarcoma , Humans , HEK293 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Osteosarcoma/drug therapy , Osteosarcoma/metabolism , Osteosarcoma/pathology , Cell Line, Tumor , Cell Proliferation
4.
Materials (Basel) ; 14(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34442926

ABSTRACT

Ionic substitutions within the hydroxyapatite lattice are a widely used approach to mimic the chemical composition of the bone mineral. In this work, Sr-substituted and Mg- and Sr-co-substituted calcium phosphate (CaP) scaffolds, with various levels of strontium and magnesium substitution, were prepared using the hydrothermal method at 200 °C. Calcium carbonate skeletons of cuttlefish bone, ammonium dihydrogenphosphate (NH4H2PO4), strontium nitrate (Sr(NO3)2), and magnesium perchlorate (Mg(ClO4)2) were used as reagents. Materials were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Whole powder pattern decomposition refinements of XRD data indicated that increased magnesium content in the Mg- and Sr-co-substituted scaffolds was related to an increased proportion of the whitlockite (WH) phase in the biphasic hydroxyapatite (HAp)/WH scaffolds. In addition, refinements indicate that Sr2+ ions have replaced Ca2+ sites in the WH phase. Furthermore, PCL-coated Mg-substituted and Sr- and Mg-co-substituted scaffolds, with the HAp:WH wt. ratio of 90:10 were prepared by vacuum impregnation. Results of compression tests showed a positive impact of the WH phase and PCL coating on the mechanical properties of scaffolds. Human mesenchymal stem cells (hMSCs) were cultured on composite scaffolds in an osteogenic medium for 21 days. Immunohistochemical staining showed that Mg-Sr-CaP/PCL scaffold exhibited higher expression of collagen type I than the Mg-CaP/PCL scaffold, indicating the positive effect of Sr2+ ions on the differentiation of hMSCs, in concordance with histology results. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis confirmed an early stage of osteogenic differentiation.

5.
Materials (Basel) ; 14(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205736

ABSTRACT

The aim of this study was to prepare a biomimetic selenium substituted calcium phosphate system for potential application in osteosarcoma therapy. Calcium phosphate (CaP) systems substituted with selenite ions were prepared by the wet precipitation method, using biogenic CaCO3 (derived from cuttlefish bone), CO(NH2)2-H3PO4, and Na2SeO3·5H2O as reagents. Starting reaction mixtures were prepared based on the formula for selenite-substituted hydroxyapatite, Ca10(PO4)6-x(SeO3)x(OH)2, with Ca/(P + Se) molar ratio of 1.67 and Se/(P + Se) molar ratio of: 0, 0.01, 0.05, and 0.10, respectively. The prepared CaP powders were characterized by Fourier transform infrared spectrometry, elemental analysis, scanning electron microscopy, X-ray powder diffraction analysis and Rietveld refinement studies. Phase transformation and ion release were analyzed during 7 days of incubation in simulated body fluid at 37 °C. The metabolic activity of healthy and osteosarcoma cell lines was assessed by cell cytotoxicity and viability test. The as-prepared powders were composed of calcium-deficient carbonated hydroxyapatite (HAp), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP). Along with the selenite substitution, the presence of Sr2+, Na+, and Mg2+ was detected as a result of using cuttlefish bone as a precursor for Ca2+ ions. Inductively coupled plasma mass spectrometry analysis showed that the Se/(P + Se) molar ratios of selenite substituted powders are lower than the nominal ratios. Heat treated powders were composed of HAp, α-tricalcium phosphate (α-TCP) and ß-tricalcium phosphate (ß-TCP). Doping CaP structure with selenite ions improves the thermal stability of HAp. The powder with the Se/(P + Se) molar ratio of 0.007 showed selective toxicity to cancer cells.

6.
J Biomed Mater Res B Appl Biomater ; 108(4): 1697-1709, 2020 05.
Article in English | MEDLINE | ID: mdl-31738012

ABSTRACT

Biomimetic triphasic strontium-substituted calcium phosphate (CaP) powders were prepared by wet precipitation method at 50°C, using CaCO3 , (NH2 )2 COH3 PO4 , and Sr(NO3 )2 as reagents. Calcite was prepared from biogenic source (cuttlefish bone). The synthesized powders have been characterized by elemental analysis, Fourier transform infrared spectrometry, X-ray diffraction, Rietveld refinement studies and cell viability test. Phase transformation and ion release were analyzed during 7 days of incubation in simulated body fluid at 37°C. The raw precipitated powders were composed of calcium deficient carbonated hydroxyapatite (HA), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP). After heat treatment at 1200°C ß-tricalcium phosphate (ß-TCP) was detected. Strontium substitution for calcium results in an increase of lattice parameters in HA, OCP, and ß-TCP. Sr2+ occupy the Ca(1) site in HA, Ca(3,4,7,8) sites in OCP and Ca(1,2,3,4) sites in ß-TCP. Along with Sr2+ substitution, presence of Mg2+ and Na+ ions was detected as a result of using biogenic calcium carbonate. The culture of human embryonic kidney cells indicated noncytotoxicity of the prepared CaP powders with emphasis on the cell proliferation during 3 days of culture.


Subject(s)
Biomimetic Materials , Bone and Bones/chemistry , Calcium Phosphates/chemistry , Decapodiformes/chemistry , Materials Testing , Strontium/chemistry , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , HEK293 Cells , Humans
7.
Croat Med J ; 60(3): 201-211, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31187947

ABSTRACT

AIM: To assess whether an adenoviral vector carrying the bone morphogenetic protein genes (Ad.BMP-2) can transduce human muscle tissue and direct it toward osteogenic differentiation within one hour. METHODS: This in vitro study, performed at the Department of Molecular Biology, Faculty of Science, Zagreb from 2012 to 2017, used human muscle tissue samples collected during anterior cruciate ligament reconstructions performed in St Catherine Hospital, Zabok. Samples from 28 patients were transduced with adenoviral vector carrying firefly luciferase cDNA (Ad.luc) by using different doses and times of transduction, and with addition of positive ions for transduction enhancement. The optimized protocol was further tested on muscle samples from three new patients, which were transduced with Ad.BMP-2. Released bone morphogenetic protein 2 (BMP-2) levels in osteogenic medium were measured every three days during a period of 21 days. Expression of osteogenic markers was measured at day 14 and 21. After 21 days of cultivation, muscle tissue was immunohistochemically stained for collagen type I detection (COL-I). RESULTS: The new transduction protocol was established using 108 plaque-forming units (P<0.001) as an optimal dose of adenoviral vector and 30 minutes (P<0.001) as an optimal contact time. Positive ions did not enhance transduction. Samples transduced with Ad.BMP-2 according to the optimized protocol showed enhanced expression of osteogenic markers (P<0.050), BMP-2 (P<0.001), and COL I. CONCLUSION: This study confirms that Ad.BMP-2 can transduce human muscle tissue and direct it toward osteogenic differentiation within 30 minutes.


Subject(s)
Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation/genetics , Muscle, Skeletal/physiology , Osteogenesis/genetics , Transduction, Genetic , Adenoviridae , Adolescent , Adult , Cells, Cultured , Genetic Enhancement , Genetic Vectors , Humans , Middle Aged , Tendons/physiology , Young Adult
8.
Materials (Basel) ; 12(6)2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30893951

ABSTRACT

The main goal of this study was the formation of bone tissue using dexamethasone (DEX)-loaded [COCH3]-RADARADARADARADA-[CONH2] (RADA 16-I) scaffold that has the ability to release optimal DEX concentration under perfusion force. Bone-marrow samples were collected from three patients during a hip arthroplasty. Human mesenchymal stem cells (hMSCs) were isolated and propagated in vitro in order to be seeded on scaffolds made of DEX-loaded RADA 16-I hydrogel in a perfusion bioreactor. DEX concentrations were as follows: 4 × 10-3, 4 × 10-4 and 4 × 10-5 M. After 21 days in a perfusion bioreactor, tissue was analyzed by scanning electron microscopy (SEM) and histology. Markers of osteogenic differentiation were quantified by real-time polymerase chain reaction (RT-PCR) and immunocytochemistry. Minerals were quantified and detected by the von Kossa method. In addition, DEX release from the scaffold in a perfusion bioreactor was assessed. The osteoblast differentiation was confirmed by the expression analysis of osteoblast-related genes (alkaline phosphatase (ALP), collagen I (COL1A1) and osteocalcin (OC). The hematoxylin/eosin staining confirmed the presence of cells and connective tissue, while SEM revealed morphological characteristics of cells, extracellular matrix and minerals-three main components of mature bone tissue. Immunocytochemical detection of collagen I is in concordance with given results, supporting the conclusion that scaffold with DEX concentration of 4 × 10-4 M has the optimal engineered tissue morphology. The best-engineered bone tissue is produced on scaffold loaded with 4 × 10-4 M DEX with a perfusion rate of 0.1 mL/min for 21 days. Differentiation of hMSCs on DEX-loaded RADA 16-I scaffold under perfusion force has a high potential for application in regenerative orthopedics.

9.
J Photochem Photobiol B ; 194: 32-45, 2019 May.
Article in English | MEDLINE | ID: mdl-30904584

ABSTRACT

Sun or therapy-related ultraviolet B (UVB) irradiation induces different cell death modalities such as apoptosis, necrosis/necroptosis and autophagy. Understanding of mechanisms implicated in regulation and execution of cell death program is imperative for prevention and treatment of skin diseases. An essential component of death-inducing complex is Fas-associated protein with death domain (FADD), involved in conduction of death signals of different death modalities. The purpose of this study was to enlighten the role of FADD in the selection of cell death mode after narrow-band UVB (NB-UVB) irradiation using specific cell death inhibitors (carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]- fluoromethylketone (zVAD-fmk), Necrostatin-1 and 3-Methyladenine) and FADD-deficient (FADD-/-) mouse embryonic fibroblasts (MEFs) and their wild type (wt) counterparts. The results imply that lack of FADD sensitized MEFs to induction of receptor-interacting protein 1 (RIPK1)-dependent apoptosis by the generation of reactive oxygen species (ROS), but without activation of the proteins p53, Bax and Bcl-2 as well as without the enrolment of calpain-2. Autophagy was established as a contributing factor to NB-UVB-induced death execution. By contrast, wt cells triggered intrinsic apoptotic pathway that was resistant to the inhibition by zVAD-fmk and Necrostatin-1 pointing to the mechanism overcoming the cell survival. These findings support the role of FADD in prevention of autophagy-dependent apoptosis.


Subject(s)
Apoptosis/radiation effects , Autophagy/radiation effects , Fas-Associated Death Domain Protein/deficiency , Fibroblasts/cytology , Fibroblasts/radiation effects , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Ultraviolet Rays , Amino Acid Chloromethyl Ketones/pharmacology , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Survival/drug effects , Cell Survival/radiation effects , DNA Damage , Embryo, Mammalian/cytology , Fibroblasts/metabolism , Imidazoles/pharmacology , Indoles/pharmacology , Mice , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism
10.
Int J Biol Macromol ; 129: 645-652, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30771388

ABSTRACT

The synthesis of biologically active scaffolds is focused on the design of cell-sensitive surface by applying cell-adhesive proteins or bioceramic micro (nano) particles. The emerging new strategy for manipulating the biological properties lies in the modification by trace metals found in the living organism. In this work, we have prepared biocompatible chitosan hydrogels modified by copper (II) and zinc (II) ions through complexation interactions. Due to the strong affinity of metal ions towards amino groups of chitosan, we obtained defined and ordered structures of metal ion-chitosan hydrogel without the formation of additional metal species. The physical and biological properties of complex hydrogels varied in metal ion concentration-dependent manner, from less stable cytocompatible to more stable cytotoxic structure for copper-chitosan system. Interestingly, zinc-chitosan complex hydrogels did show lower stability, but significantly higher biocompatibility with respect to the copper-containing hydrogels.


Subject(s)
Chemical Phenomena , Chitosan/chemistry , Copper/chemistry , Zinc/chemistry , Chitosan/toxicity , HEK293 Cells , Humans
11.
J Biomed Mater Res B Appl Biomater ; 107(1): 197-204, 2019 01.
Article in English | MEDLINE | ID: mdl-29573130

ABSTRACT

Being a major component of bone tissue, hydroxyapatite is the most investigated calcium phosphate in the design and development of bone implants. The high brittleness and poor load-bearing properties have led researchers to manipulate hydroxyapatite performance by applying polymer or metal materials. The present study focuses on biomimetic approach of the hydroxyapatite synthesis from the cuttlefish bone in order to preserve highly porous structure. The low stiffness of hydroxyapatite scaffold was altered by thin polycaprolactone/poly(lactic acid) coating, resulting in remarkably 18-fold increase of Young's modulus. The mechanical test revealed that poly(lactic acid) increases the stiffness of composite scaffolds which depends on the polycaprolactone/poly(lactic acid) volume ratio. The composite scaffolds are bioactive supporting the deposition of new calcium phosphates when incubated in simulated physiological medium for 21 days. Moreover, the culture of human embryonic kidney cells indicated non-cytotoxicity of the composite scaffolds with emphasis on the cell proliferation during three days of culture. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 197-204, 2019.


Subject(s)
Biodegradable Plastics , Bone Substitutes , Decapodiformes/chemistry , Materials Testing , Polyesters , Tissue Scaffolds/chemistry , Animals , Biodegradable Plastics/chemistry , Biodegradable Plastics/pharmacology , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , HEK293 Cells , Humans , Polyesters/chemistry , Polyesters/pharmacology
12.
ChemistryOpen ; 7(8): 624-638, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30151334

ABSTRACT

We report the synthesis of SAHAquines and related primaquine (PQ) derivatives. SAHAquines are novel hybrid compounds that combine moieties of suberoylanilide hydroxamic acid (SAHA), an anticancer agent with weak antiplasmodial activity, and PQ, an antimalarial drug with low antiproliferative activity. The preparation of SAHAquines is simple, cheap, and high yielding. It includes the following steps: coupling reaction between primaquine and a dicarboxylic acid monoester, hydrolysis, a new coupling reaction with O-protected hydroxylamine, and deprotection. SAHAquines 5 a-d showed significant reduction in cell viability. Among the three human cancer cell lines (U2OS, HepG2, and MCF-7), the most responsive were the MCF-7 cells. The antibodies against acetylated histone H3K9/H3K14 in MCF-7 cells revealed a significant enhancement following treatment with N-hydroxy-N'-{4-[(6-methoxyquinolin-8-yl)amino]pentyl}pentanediamide (5 b). Ethyl (2E)-3-({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)prop-2-enoate (2 b) and SAHAquines were the most active compounds against both the hepatic and erythrocytic stages of Plasmodium parasites, some of them at sub-micromolar concentrations. The results of our research suggest that SAHAquines are promising leads for new anticancer and antimalarial agents.

13.
Naunyn Schmiedebergs Arch Pharmacol ; 391(5): 537-550, 2018 05.
Article in English | MEDLINE | ID: mdl-29541820

ABSTRACT

Apigenin is found in several dietary plant foods such as vegetables and fruits. To investigate potential anticancer properties of apigenin on human breast cancer, ER-positive MCF-7 and triple-negative MDA MB-231 cells were used. Moreover, toxicological safety of apigenin towards normal cells was evaluated in human lymphocytes. Cytotoxicity of apigenin towards cancer cells was evaluated by MTT assay whereas further genotoxic and oxidative stress parameters were measured by comet and lipid peroxidation assays, respectively. In order to examine the type of cell death induced by apigenin, several biomarkers were used. Toxicological safety towards normal cells was evaluated by cell viability and comet assays. After the treatment with apigenin, we observed changes in cell morphology in a dose- (10 to 100 µM) and time-dependent manner. Moreover, apigenin caused cell death in both cell lines leading to significant toxicity and dominantly to apoptosis. Furthermore, apigenin proved to be genotoxic towards the selected cancer cells with a potential to induce oxidative damage to lipids. Of great importance is that no significant cytogenotoxic effects were detected in normal cells. The observed cytogenotoxic and pro-cell death activities of apigenin coupled with its low toxicity towards normal cells indicate that this natural product could be used as a future anticancer modality. Therefore, further analysis to determine the exact mechanism of action and in vivo studies on animal models are warranted.


Subject(s)
Apigenin/pharmacology , Apoptosis/drug effects , Breast Neoplasms/metabolism , DNA Damage , Oxidative Stress/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Comet Assay , Female , Humans , Lipid Peroxidation/drug effects
15.
Int Orthop ; 41(6): 1189-1198, 2017 06.
Article in English | MEDLINE | ID: mdl-28299448

ABSTRACT

PURPOSE: The aim of this study is to examine the capacity of muscle tissue preserved on hamstring tendons forming candy-stripe grafts in order to improve tendon to bone ingrowth and ligamentization. We hypothesized that muscle tissue does possess a stem cell population that could enhance the healing process of the ACL graft when preserved on the tendons. METHODS: Human samples from gracilis and semitendinosus muscles were collected during ACL surgery from ten patients and from these tissue samples human muscle-derived stem cells and tendon-derived stem cells were isolated and propagated. Both stem cell populations were in-vitro differentiated into osteogenic lineage. Alkaline phosphatase activity was determined at days zero and 14 of the osteogenic induction and von Kossa staining to assess mineralization of the cultures. Total RNA was collected from osteoblast cultures and real time quantitative PCR was performed. Western-blot for osteocalcin and collagen type I followed protein isolation. Immunofluorescence double labeling of pericytes in muscle and tendon tissue was performed. RESULTS: Mesenchymal stem cells from muscle and tendon tissue were isolated and expanded in cell culture. More time was needed to grow the tendon derived culture compared to muscle derived culture. Muscle derived stem cells exhibited more alkaline phosphatase actvity compared to tendon derived stem cells, whereas tendon derived stem cells formed more mineralized nodules after 14 days of osteoinduction. Muscle derived stem cells exhibited higher expression levels of bone sialoprotein, and tendon derived stem cells showed higher expression of dental-matrix-protein 1 and osteocalcin. Immunofluorescent staining against pericytes indicated that they are more abundant in muscle tissue. CONCLUSIONS: These results indicate that muscle tissue is a better source of stem cells than tendon tissue. Achievement of this study is proof that there is vast innate capacity of muscle tissue for enhancement of bone-tendon integration and ligamentization of ACL hamstring grafts and consequently muscle tissue should not be treated as waste after harvesting.


Subject(s)
Anterior Cruciate Ligament Reconstruction/methods , Anterior Cruciate Ligament/surgery , Muscle Cells/metabolism , Pericytes/transplantation , Stem Cells/metabolism , Tendons/transplantation , Wound Healing , Blotting, Western , Fluorescent Antibody Technique , Humans , Muscle Cells/cytology , Real-Time Polymerase Chain Reaction , Stem Cells/cytology
16.
Polymers (Basel) ; 9(9)2017 Aug 23.
Article in English | MEDLINE | ID: mdl-30965692

ABSTRACT

The extensive need for hard tissue substituent greatly motivates development of suitable allogeneic grafts for therapeutic recreation. Different calcium phosphate phases have been accepted as scaffold's components with positive influence on osteoinduction and differentiation of human mesenchymal stem cells, in terms of their higher fraction within the graft. Nevertheless, the creation of unlimited nutrients diffusion through newly formed grafts is of great importance. The media flow accomplished by perfusion forces can provide physicochemical, and also, biomechanical stimuli for three-dimensional bone-construct growth. In the present study, the influence of a different scaffold's composition on the human mesenchymal stem cells (hMSCs) differentiation performed in a U-CUP bioreactor under perfusion conditioning was investigated. The histological and immunohistochemical analysis of cultured bony tissues, and the evaluation of osteogenic genes' expression indicate that the lower fraction of in situ formed hydroxyapatite in the range of 10⁻30% within chitosan scaffold could be preferable for bone-construct development.

17.
Open Access Maced J Med Sci ; 4(1): 9-16, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-27275321

ABSTRACT

AIM: Determine the levels of expression of pluripotency genes OCT-4 and SOX-2 before and after osteogenic differentiation of human mesenchymal stem cells (hMSCs). METHODS: Human MSCs were derived from the bone marrow and differentiated into osteoblasts. The analyses were performed on days 0 and 14 of the cell culture. In vitro differentiation was evaluated due to bone markers - alkaline phosphatase (AP) activity and the messenger RNA (mRNA) expression of AP and bone sialoprotein (BSP). The OCT-4 and SOX-2 expression was evaluated at mRNA level by real-time qPCR and at protein level by immunocytochemistry. RESULTS: In vitro cultures on day 14 showed an increase in AP activity and upregulation of AP and BSP gene expression. OCT-4 and SOX-2 in undifferentiated hMSCs on day 0 is detectable and very low compared to tumor cell lines as a positive control. Immunocytochemistry detected OCT-4 in the cell nuclei prior (day 0) and post differentiation (day 14). On the same time points, cultures were negative for SOX-2 protein. CONCLUSION: Messenger RNA for pluripotency markers OCT-4 and SOX-2 isolated from hMSCs was less present, while OCT-4 protein was detected in cell nuclei prior and post differentiation into osteoblast lineage.

18.
Int J Radiat Biol ; 92(8): 475-82, 2016 08.
Article in English | MEDLINE | ID: mdl-27258329

ABSTRACT

PURPOSE: Ultraviolet (UV) radiation-induced apoptosis enabled us to study the mechanism of DNA damage and to investigate how cells avoid consequences of damaged DNA. Cells with extensive DNA damage activate extrinsic and intrinsic pathways of apoptosis. The extrinsic pathway is coupled to a FAS-associated protein with death domain (FADD), an adaptor protein molecule necessary for mediating apoptotic signals through the cell. MATERIALS AND METHODS: Viability and apoptosis of wild-type and FADD-deficient mouse embryonic fibroblasts were investigated 1, 3, 24 and 48 h after exposure to three doses (50, 75 and 300 J/m(2)) of UVC radiation. Morphological changes were observed using DNA binding dyes (Hoechst and propidium iodide) while biochemical changes were monitored using immunodetection of the poly (ADP-ribose) polymerase (PARP) protein cleavage and caspase-3 activity assay. RESULTS: Results showed that the difference in cell death response between wild-type and FADD-deficient cells depended on dose and incubation time after exposure to UVC radiation. FADD-deficient cells are more sensitive to UVC radiation. Even though FADD-deficient cells lack an adapter protein of apoptotic extrinsic pathway, higher doses of UVC triggered their apoptotic response, while wild-type cells die mainly due to necrosis. A different pattern of caspase 3 activity and PARP cleavage was observed 24 h after radiation between two cell lines confirming higher apoptotic response in FADD-deficient cells. CONCLUSIONS: Wild-type cells can execute apoptosis via both, the mitochondrial and the receptor-mediated pathway whereas FADD-deficient cells can only activate the intrinsic pathway. There is a difference in UVC radiation response between two cell lines indicating the role of FADD in the selection of cell death modality.


Subject(s)
Apoptosis/radiation effects , DNA Damage/physiology , Fas-Associated Death Domain Protein/metabolism , Fibroblasts/physiology , Fibroblasts/radiation effects , Ultraviolet Rays , Animals , Apoptosis/genetics , Cell Line , Cell Survival/genetics , Cell Survival/radiation effects , Dose-Response Relationship, Radiation , Fibroblasts/cytology , Mice , Mice, Knockout , Radiation Dosage
19.
Anticancer Drugs ; 26(2): 180-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25280061

ABSTRACT

Effective treatment methods for human leukemia are under development, but so far none of them have been found to be completely satisfactory. It was recently reported that palladium complexes have significant anticancer activity as well as lower toxicity compared with some clinically used chemotherapeutics. The anticancer activities of two novel palladium(II) complexes, [Pd(sac)(terpy)](sac)·4H2O and [PdCl(terpy)](sac)·2H2O, were tested against three human leukemia cell lines, Jurkat, MOLT-4, and THP-1, in comparison with cisplatin and adriamycin. The cytotoxic effect of the drugs was determined using the MTT assay. Cell death was assessed using fluorescein isothiocyanate-annexin/propidium iodide staining for flow cytometry. Furthermore, p53 phosphorylation, poly(ADP-ribose) polymerase cleavage, and Bax and Bcl-2 mRNA levels were examined to elucidate the mechanism of cell death induction. Both complexes exhibited a significant dose-dependent antigrowth effect in vitro. The complexes predominately induced apoptosis, but necrosis was also observed. In-vitro results have shown that palladium(II) complexes may be regarded as potential anticancer agents for treating human leukemia. Therefore, further analysis to determine the putative mechanism of action and in-vivo studies on animal models are warranted.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Leukemia/drug therapy , Palladium/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Cell Death/drug effects , Cell Line, Tumor/drug effects , Cisplatin/pharmacology , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor/methods , Humans , Jurkat Cells/drug effects , Leukemia/pathology , Palladium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...