Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793766

ABSTRACT

The SARS-CoV-2 virus has infected more than 660 million people and caused nearly seven million deaths worldwide. During the pandemic, a number of SARS-CoV-2 vaccines were rapidly developed, and several are currently licensed for use in Europe. However, the optimization of vaccination regimens is still ongoing, particularly with regard to booster vaccinations. At the same time, the emergence of new virus variants poses an ongoing challenge to vaccine efficacy. In this study, we focused on a comparative analysis of the neutralization capacity of vaccine-induced antibodies against four different variants of concern (i.e., Alpha, Beta, Delta, and Omicron) after two and three doses of COVID-19 vaccine. We were able to show that both two (prime/boost) and three (prime/boost/boost) vaccinations elicit highly variable levels of neutralizing antibodies. In addition, we did not observe a significant difference in antibody levels after two and three vaccinations. We also observed a significant decrease in the neutralization susceptibility of all but one SARS-CoV-2 variants to vaccine-induced antibodies. In contrast, a SARS-CoV-2 breakthrough infection between the second and third vaccination results in overall higher levels of neutralizing antibodies with a concomitant improved neutralization of all virus variants. Titer levels remained highly variable across the cohort but a common trend was observed. This may be due to the fact that at the time of this study, all licensed vaccines were still based exclusively on wild-type SARS-CoV-2, whereas infections were caused by virus variants. Overall, our data demonstrate the importance of (booster) vaccinations, but at the same time emphasize the need for the continued adaptation of vaccines to induce a protective immune response against virus variants in order to be prepared for future (seasonal) SARS-CoV-2 outbreaks.

2.
Infection ; 51(1): 265-270, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35816222

ABSTRACT

BACKGROUND: Monkeypox is a zoonotic orthopoxvirus infection endemic in central and western Africa. In May 2022, human monkeypox infections including human-to-human transmission were reported in a multi-country outbreak in Europe and North America. CASE PRESENTATIONS: Here we present the first two cases of monkeypox infection in humans diagnosed in Germany. We present clinical and virological findings, including the detection of monkeypox virus DNA in blood and semen. The clinical presentation and medical history of our patients suggest close physical contact during sexual interactions as the route of infection. CONCLUSION: Monkeypox requires rapid diagnosis and prompt public health response. The disease should be considered in the current situation especially the differential diagnosis of vesicular or pustular rash, particularly in patients with frequent sexual contacts. Most importantly, it is essential to raise awareness among all health professionals for the rapid and correct recognition and diagnosis of this disease, which is probably still underreported in Europe (Adler et al. in Lancet Infect Dis https://doi.org/10.1016/s1473-3099(22)00228-6 , 2022).


Subject(s)
Mpox (monkeypox) , Humans , Animals , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Germany/epidemiology , Europe , Zoonoses , Diagnosis, Differential
3.
Nat Commun ; 13(1): 5586, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151076

ABSTRACT

Antibodies against the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can drive adaptive evolution in immunocompromised patients with chronic infection. Here we longitudinally analyze SARS-CoV-2 sequences in a B cell-depleted, lymphoma patient with chronic, ultimately fatal infection, and identify three mutations in the spike protein that dampen convalescent plasma-mediated neutralization of SARS-CoV-2. Additionally, four mutations emerge in non-spike regions encoding three CD8 T cell epitopes, including one nucleoprotein epitope affected by two mutations. Recognition of each mutant peptide by CD8 T cells from convalescent donors is reduced compared to its ancestral peptide, with additive effects resulting from double mutations. Querying public SARS-CoV-2 sequences shows that these mutations have independently emerged as homoplasies in circulating lineages. Our data thus suggest that potential impacts of CD8 T cells on SARS-CoV-2 mutations, at least in those with humoral immunodeficiency, warrant further investigation to inform on vaccine design.


Subject(s)
COVID-19 , Lymphoma , Vaccines , CD8-Positive T-Lymphocytes , COVID-19/therapy , Epitopes, T-Lymphocyte/genetics , Humans , Immunization, Passive , Mutation , Nucleoproteins/genetics , Peptides/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
4.
Bioinformatics ; 37(21): 3932-3933, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34469515

ABSTRACT

SUMMARY: The Flexible Taxonomy Database framework provides a method for modification and merging official and custom taxonomic databases to create improved databases. Using such databases will increase accuracy and precision of existing methods to classify sequence reads. AVAILABILITY AND IMPLEMENTATION: Source code is freely available at https://github.com/FOI-Bioinformatics/flextaxd and installable through Bioconda.


Subject(s)
Software , Databases, Factual
5.
mSystems ; 6(4): e0039221, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34342536

ABSTRACT

Controlling and monitoring the still ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic regarding geographical distribution, evolution, and emergence of new mutations of the SARS-CoV-2 virus is only possible due to continuous next-generation sequencing (NGS) and sharing sequence data worldwide. Efficient sequencing strategies enable the retrieval of increasing numbers of high-quality, full-length genomes and are, hence, indispensable. Two opposed enrichment methods, tiling multiplex PCR and sequence hybridization by bait capture, have been established for SARS-CoV-2 sequencing and are both frequently used, depending on the quality of the patient sample and the question at hand. Here, we focused on the evaluation of the sequence hybridization method by studying five commercially available sequence capture bait panels with regard to sensitivity and capture efficiency. We discovered the SARS-CoV-2-specific panel of Twist Bioscience to be the most efficient panel, followed by two respiratory panels from Twist Bioscience and Illumina, respectively. Our results provide on the one hand a decision basis for the sequencing community including a computation for using the full capacity of the flow cell and on the other hand potential improvements for the manufacturers. IMPORTANCE Sequencing the genomes of the circulating SARS-CoV-2 strains is the only way to monitor the viral spread and evolution of the virus. Two different approaches, namely, tiling multiplex PCR and sequence hybridization by bait capture, are commonly used to fulfill this task. This study describes for the first time a combined approach of droplet digital PCR (ddPCR) and NGS to evaluate five commercially available sequence capture panels targeting SARS-CoV-2. In doing so, we were able to determine the most sensitive and efficient capture panel, distinguish the mode of action of the various bait panels, and compute the number of read pairs needed to recover a high-quality full-length genome. By calculating the minimum number of read pairs needed, we are providing optimized flow cell loading conditions for all sequencing laboratories worldwide that are striving for maximizing sequencing output and simultaneously minimizing time, costs, and sequencing resources.

6.
Viruses ; 12(11)2020 11 02.
Article in English | MEDLINE | ID: mdl-33147840

ABSTRACT

We are currently facing a pandemic of COVID-19, caused by a spillover from an animal-originating coronavirus to humans occurring in the Wuhan region of China in December 2019. From China, the virus has spread to 188 countries and regions worldwide, reaching the Sahel region on March 2, 2020. Since whole genome sequencing (WGS) data is very crucial to understand the spreading dynamics of the ongoing pandemic, but only limited sequencing data is available from the Sahel region to date, we have focused our efforts on generating the first Malian sequencing data available. Screening 217 Malian patient samples for the presence of SARS-CoV-2 resulted in 38 positive isolates, from which 21 whole genome sequences were generated. Our analysis shows that both the early A (19B) and the later observed B (20A/C) clade are present in Mali, indicating multiple and independent introductions of SARS-CoV-2 to the Sahel region.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Genome, Viral/genetics , Pneumonia, Viral/epidemiology , RNA, Viral/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , Child , Child, Preschool , Female , Genetic Variation/genetics , Genomics , Humans , Male , Mali/epidemiology , Middle Aged , Pandemics , Phylogeny , SARS-CoV-2 , Whole Genome Sequencing , Young Adult
7.
Virus Genes ; 56(6): 767-771, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33034798

ABSTRACT

In the present work, two complete genome sequences of SARS-CoV-2 were obtained from nasal swab samples of Tunisian SARS-CoV-2 PCR-positive patients using nanopore sequencing. The virus genomes of two of the patients examined, a Tunisian soldier returning from a mission in Morocco and a member of another Tunisian family, showed significant differences in analyses of the total genome and single nucleotide polymorphisms (SNPs). Phylogenetic relationships with known SARS-CoV-2 genomes in the African region, some European and Middle Eastern countries and initial epidemiological conclusions indicate that the introduction of SARS-CoV-2 into Tunisia from two independent sources was travel-related.


Subject(s)
COVID-19/epidemiology , Genome, Viral , Pandemics , Phylogeny , SARS-CoV-2/genetics , Adult , Asymptomatic Diseases , COVID-19/diagnosis , COVID-19/transmission , COVID-19/virology , Europe/epidemiology , Female , Hospitals, Military , Humans , Male , Middle Aged , Military Personnel , Morocco/epidemiology , Pedigree , RNA, Viral/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Travel-Related Illness , Tunisia/epidemiology , Viral Load , Whole Genome Sequencing
8.
Infection ; 47(5): 863-868, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31073709

ABSTRACT

In July 2018, brucellosis was diagnosed in a German patient without a travel history to regions endemic for Brucella. Microbiological analysis, including whole-genome sequencing, revealed Brucella suis biovar 1 as the etiologic agent. Core-genome-based multilocus sequence-typing analysis placed the isolate in close proximity to strains originating from Argentina. Notably, despite a strong IgM response, the patient did not develop Brucella-specific IgG antibodies during infection. Here, we describe the clinical course of infection, the extensive epidemiological investigations, and discuss possible routes of transmission.


Subject(s)
Antibodies, Bacterial/blood , Brucella suis/isolation & purification , Brucellosis/cerebrospinal fluid , Brucellosis/diagnostic imaging , Headache/microbiology , Brucella suis/genetics , Fever/microbiology , Genotype , Germany , Hepatomegaly/diagnostic imaging , Humans , Male , Middle Aged , Multilocus Sequence Typing , Phylogeny , Ultrasonography , Whole Genome Sequencing
9.
PeerJ ; 7: e6561, 2019.
Article in English | MEDLINE | ID: mdl-30847261

ABSTRACT

BACKGROUND: Between 2008 and 2011 about 40 cases of human cowpox were reported from Germany and France. Infections had been acquired via close contact to infected, young pet rats. An identical and unique sequence of the hemagglutinin gene was found in various cowpox virus (CPXV) isolates pointing to a common source of infection. In a second CPXV outbreak in cats in a small animal clinic in Germany in 2015, four out of five hospitalized cats showed identical hemagglutinin sequences and thus, a hospital-acquired transmission had been assumed. Next-Generation Sequencing was performed in order to re-investigate the outbreaks, as epidemiological data could not confirm all cases. METHODS: Homogenates of lesion material from rats, cats and humans were cultivated in cell culture. The genomes of four virus isolates, nine CPXVs from our strain collections and from DNA of three paraffin-embedded lesion materials were determined by Next Generation Sequencing (NGS). For phylogenetic analyses a MAFFT-alignment was generated. A distance matrix based on concatenated SNPs was calculated and plotted as dendrogram using Unweighted Pair Group Method with Arithmetic mean (UPGMA) for visualization. RESULTS: Aligning of about 200.000 nucleotides of 8 virus isolates associated with the pet rat outbreak revealed complete identity of six genomes, the remainder two genomes differed in as little as 3 SNPs. When comparing this dataset with four already published CPXV genomes also associated with the pet rat outbreak, again a maximum difference of 3 SNPs was found. The outbreak which lasted from 2008 till 2011 was indeed caused by a single strain which has maintained an extremely high level of clonality over 4 years. Aligning genomic sequences from four cases of feline cowpox revealed 3 identical sequences and one sequence which differed in 65 nucleotides. Although identical hemagglutinin sequences had been obtained from four hospitalized cats, genomic sequencing proved that a hospital-acquired transmission had occurred in only three cats. CONCLUSION: Analyzing the rather short sequence of the hemagglutinin gene is not sufficient to conduct molecular trace back analyses. Instead, whole genome sequencing is the method of choice which can even be applied to paraffin-embedded specimens.

10.
Genome Announc ; 5(38)2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28935751

ABSTRACT

We report the draft genome sequence of clindamycin-resistant Bacillus safensis strain Ingolstadt isolated from a patient with bacterial colonization after heart surgery. The draft genome comprises 3.75 Mbp and harbors 3,793 predicted protein-encoding genes and a small plasmid.

11.
Viruses ; 9(8)2017 07 27.
Article in English | MEDLINE | ID: mdl-28749451

ABSTRACT

Although smallpox has been known for centuries, the oldest available variola virus strains were isolated in the early 1940s. At that time, large regions of the world were already smallpox-free. Therefore, genetic information of these strains can represent only the very last fraction of a long evolutionary process. Based on the genomes of 48 strains, two clades are differentiated: Clade 1 includes variants of variola major, and clade 2 includes West African and variola minor (Alastrim) strains. Recently, the genome of an almost 400-year-old Lithuanian mummy was determined, which fell basal to all currently sequenced strains of variola virus on phylogenetic trees. Here, we determined two complete variola virus genomes from human tissues kept in a museum in Prague dating back 60 and 160 years, respectively. Moreover, mass spectrometry-based proteomic, chemical, and microscopic examinations were performed. The 60-year-old specimen was most likely an importation from India, a country with endemic smallpox at that time. The genome of the 160-year-old specimen is related to clade 2 West African and variola minor strains. This sequence likely represents a new endemic European variant of variola virus circulating in the midst of the 19th century in Europe.


Subject(s)
Genome, Viral , Museums , Smallpox/virology , Variola virus/genetics , Czech Republic , DNA, Viral/genetics , Europe/epidemiology , Evolution, Molecular , High-Throughput Nucleotide Sequencing , History, 19th Century , History, 20th Century , Humans , India/epidemiology , Phylogeny , Polymerase Chain Reaction , Proteomics , Smallpox/epidemiology , Smallpox/history , Variola virus/classification
12.
Ticks Tick Borne Dis ; 8(5): 808-812, 2017 08.
Article in English | MEDLINE | ID: mdl-28684041

ABSTRACT

Tularemia is a rare zoonotic disease in Germany. Francisella tularensis has been isolated previously from ticks in southern Germany underscoring the importance of ticks (Ixodes ricinus) in tularemia transmission, but there have been only few reports from this region with single cases or small case series of tick-borne transmissions of tularemia. We report five cases of non-game animal associated tularemia diagnosed from 2010 to 2016 in southwestern Germany - Baden-Wuerttemberg. Our case series and molecular typing (MLVA) results add published clinical experience to this underdiagnosed disease and consolidate previous findings regarding tick-borne transmission of tularemia and phylogenetic diversity in Germany.


Subject(s)
Francisella tularensis/genetics , Francisella tularensis/isolation & purification , Tick-Borne Diseases/diagnosis , Tularemia/diagnosis , Adult , Female , Germany , Humans , Male , Middle Aged , Minisatellite Repeats , Molecular Typing , Phylogeny , Tick-Borne Diseases/microbiology , Tularemia/microbiology , Young Adult
13.
PLoS One ; 12(4): e0175425, 2017.
Article in English | MEDLINE | ID: mdl-28388689

ABSTRACT

Brucellosis, a worldwide common bacterial zoonotic disease, has become quite rare in Northern and Western Europe. However, since 2014 a significant increase of imported infections caused by Brucella (B.) melitensis has been noticed in Germany. Patients predominantly originated from Middle East including Turkey and Syria. These circumstances afforded an opportunity to gain insights into the population structure of Brucella strains. Brucella-isolates from 57 patients were recovered between January 2014 and June 2016 with culture confirmed brucellosis by the National Consultant Laboratory for Brucella. Their whole genome sequences were generated using the Illumina MiSeq platform. A whole genome-based SNP typing assay was developed in order to resolve geographically attributed genetic clusters. Results were compared to MLVA typing results, the current gold-standard of Brucella typing. In addition, sequences were examined for possible genetic variation within target regions of molecular diagnostic assays. Phylogenetic analyses revealed spatial clustering and distinguished strains from different patients in either case, whereas multiple isolates from a single patient or technical replicates showed identical SNP and MLVA profiles. By including WGS data from the NCBI database, five major genotypes were identified. Notably, strains originating from Turkey showed a high diversity and grouped into seven subclusters of genotype II. MLVA analysis congruently clustered all isolates and predominantly matched the East Mediterranean genetic clade. This study confirms whole-genome based SNP-analysis as a powerful tool for accurate typing of B. melitensis. Furthermore it allows special allocation and therefore provides useful information on the geographic origin for trace-back analysis. However, the lack of reliable metadata in public databases often prevents a resolution below geographic regions or country levels and corresponding precise trace-back analysis. Once this obstacle is resolved, WGS-derived bacterial typing adds an important method to complement epidemiological surveys during outbreak investigations. This is the first report of a detailed genetic investigation of an extensive collection of B. melitensis strains isolated from human cases in Germany.


Subject(s)
Biodiversity , Brucella melitensis/genetics , Genes, Bacterial , Brucella melitensis/isolation & purification , Germany , Humans , Middle East , Multilocus Sequence Typing , Phylogeny , Polymorphism, Single Nucleotide
14.
J Biotechnol ; 250: 16-22, 2017 May 20.
Article in English | MEDLINE | ID: mdl-27939320

ABSTRACT

Fast turnaround times are of utmost importance for biomedical reconnaissance, particularly regarding dangerous pathogens. Recent advances in sequencing technology and its devices allow sequencing within a short time frame outside stationary laboratories close to the epicenter of the outbreak. In our study, we evaluated the portable sequencing device MinION as part of a rapidly deployable laboratory specialized in identification of highly pathogenic agents. We tested the device in the course of a NATO live agent exercise in a deployable field laboratory in hot climate conditions. The samples were obtained from bio-terroristic scenarios that formed part of the exercise and contained unknown bacterial agents. To simulate conditions of a resource-limited remote deployment site, we operated the sequencer without internet access. Using a metagenomic approach, we were able to identify the causative agent in the analyzed samples. Furthermore, depending on the obtained data, we were able to perform molecular typing down to strain level. In our study we challenged the device and discuss advances as well as remaining limitations for sequencing biological samples outside of stationary laboratories. Nevertheless, massive parallel sequencing as a non-selective methodology yields important information and is able to support outbreak investigation - even in the field.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , Disease Outbreaks/prevention & control , High-Throughput Nucleotide Sequencing/instrumentation , Laboratories/organization & administration , Sequence Analysis, DNA/instrumentation , Equipment Design , Equipment Failure Analysis , Population Surveillance/methods
15.
PLoS One ; 10(4): e0123298, 2015.
Article in English | MEDLINE | ID: mdl-25856198

ABSTRACT

The zoonotic disease tularemia is caused by the bacterium Francisella tularensis. This pathogen is considered as a category A select agent with potential to be misused in bioterrorism. Molecular typing based on DNA-sequence like canSNP-typing or MLVA has become the accepted standard for this organism. Due to the organism's highly clonal nature, the current typing methods have reached their limit of discrimination for classifying closely related subpopulations within the subspecies F. tularensis ssp. holarctica. We introduce a new gene-by-gene approach, MLST+, based on whole genome data of 15 sequenced F. tularensis ssp. holarctica strains and apply this approach to investigate an epidemic of lethal tularemia among non-human primates in two animal facilities in Germany. Due to the high resolution of MLST+ we are able to demonstrate that three independent clones of this highly infectious pathogen were responsible for these spatially and temporally restricted outbreaks.


Subject(s)
Arvicolinae , Disease Outbreaks/veterinary , Francisella tularensis/genetics , Genome, Bacterial/genetics , Genotyping Techniques/methods , Monkey Diseases/microbiology , Rodent Diseases/microbiology , Tularemia/veterinary , Animals , Animals, Zoo , Base Sequence , Cluster Analysis , Computational Biology , Databases, Genetic , Haplorhini , Humans , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Tularemia/epidemiology
16.
Genome Announc ; 3(2)2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25814598

ABSTRACT

Chikungunya virus (CHIKV) strain DH130003 was isolated from a traveler with Chikungunya fever returning from Bali to Germany. Although strains of the east-central/south African lineage bearing the A226V mutation have predominated in most parts of Asia since 2005, CHIKV DH130003 belongs to the Asian lineage.

18.
Genome Announc ; 1(1)2013 Jan.
Article in English | MEDLINE | ID: mdl-23405342

ABSTRACT

Here, we describe the genome sequence of the Francisella tularensis subsp. holarctica strain F92, belonging to the Franco-Iberian subgroup. This strain represents the first-time isolate of this subgroup in Germany and was obtained from naturally infected marmosets.

19.
Mol Cell Probes ; 22(5-6): 313-5, 2008.
Article in English | MEDLINE | ID: mdl-18602986

ABSTRACT

Specific identification of Bacillus anthracis and differentiation from closely related Bacillus cereus and Bacillus thuringiensis strains is still a major diagnostic problem. Commercially available diagnostic kits targeting plasmid-markers cannot differentiate between B. anthracis, non-anthracis Bacillus species harbouring anthrax-specific virulence plasmids, and plasmidless B. anthracis strains. A TaqMan PCR assay was designed targeting sequences of gene locus BA_5345 of the B. anthracis strain Ames. Specificity was determined by using a panel of 328 Bacillus strains; sensitivity was determined by probit analysis. All B. anthracis isolates (n=92) were specifically detected by using the genomic TaqMan PCR assay whereas 236 strains belonging to 19 Bacillus species other than B. anthracis were PCR negative. The detection limit was determined to be 12.7 copies per reaction (95% confidence interval 10.2-17.5 copies). Here we present an extensively evaluated and - to our current knowledge - specific TaqMan PCR assay for the detection of B. anthracis based on a chromosomal marker.


Subject(s)
Bacillus anthracis/genetics , Computer Systems , Genetic Markers , Polymerase Chain Reaction/methods , Anthrax/genetics , Anthrax/microbiology , Humans , Molecular Sequence Data
20.
Mol Cell Probes ; 21(2): 152-60, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17118627

ABSTRACT

We developed a multiplex PCR for amplification of ten genes involved in resistance to ciprofloxacin, doxycycline, rifampin, and vancomycin in Bacillus anthracis and closely related Bacillus cereus. Enzymatic labelling of PCR products followed by hybridization to oligonucleotide probes on a DNA microarray enabled simultaneous detection of resistance genes tetK, tetL, tetM, tetO, vanA, and vanB and resistance-mediating point mutations in genes gyrA, gyrB, parC, and rpoB. The presented assay allows detection of clinically relevant antibiotic resistance determinants within 4h and can be used as a time-saving tool supporting conventional culture-based diagnostics.


Subject(s)
Bacillus anthracis/genetics , Bacillus cereus/genetics , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Oligonucleotide Array Sequence Analysis , Base Sequence , DNA Primers , Enterococcus faecalis/genetics , Polymerase Chain Reaction , Staphylococcus aureus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...