Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
EMBO Rep ; 25(7): 3040-3063, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849673

ABSTRACT

Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney causes ciliary elongation and cystogenesis, and cell-based proximity labeling proteomics and fluorescence microscopy show alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20, and polycystin-2 (PC2) are reduced in the cilia of DLG1-deficient cells compared to control cells. This phenotype is recapitulated in vivo and rescuable by re-expression of wild-type DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggest that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.


Subject(s)
Carrier Proteins , Cilia , Discs Large Homolog 1 Protein , TRPP Cation Channels , Animals , Cilia/metabolism , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , Mice , Discs Large Homolog 1 Protein/metabolism , Carrier Proteins/metabolism , Carrier Proteins/genetics , Humans , Protein Transport , Mice, Knockout , Kidney/metabolism , Epithelial Cells/metabolism , Protein Binding , Vesico-Ureteral Reflux/metabolism , Vesico-Ureteral Reflux/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Urogenital Abnormalities
2.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-37987012

ABSTRACT

Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney caused ciliary elongation and cystogenesis, and cell-based proximity labelling proteomics and fluorescence microscopy showed alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20 and polycystin-2 (PC2) were reduced in cilia of DLG1 deficient cells compared to control cells. This phenotype was recapitulated in vivo and rescuable by re-expression of wildtype DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggested that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.

3.
Front Cell Dev Biol ; 11: 1113656, 2023.
Article in English | MEDLINE | ID: mdl-36776558

ABSTRACT

Establishment and maintenance of the primary cilium as a signaling-competent organelle requires a high degree of fine tuning, which is at least in part achieved by a variety of post-translational modifications. One such modification is ubiquitination. The small and highly conserved ubiquitin protein possesses a unique versatility in regulating protein function via its ability to build mono and polyubiquitin chains onto target proteins. We aimed to take an unbiased approach to generate a comprehensive blueprint of the ciliary ubiquitinome by deploying a multi-proteomics approach using both ciliary-targeted ubiquitin affinity proteomics, as well as ubiquitin-binding domain-based proximity labelling in two different mammalian cell lines. This resulted in the identification of several key proteins involved in signaling, cytoskeletal remodeling and membrane and protein trafficking. Interestingly, using two different approaches in IMCD3 and RPE1 cells, respectively, we uncovered several novel mechanisms that regulate cilia function. In our IMCD3 proximity labeling cell line model, we found a highly enriched group of ESCRT-dependent clathrin-mediated endocytosis-related proteins, suggesting an important and novel role for this pathway in the regulation of ciliary homeostasis and function. In contrast, in RPE1 cells we found that several structural components of caveolae (CAV1, CAVIN1, and EHD2) were highly enriched in our cilia affinity proteomics screen. Consistently, the presence of caveolae at the ciliary pocket and ubiquitination of CAV1 specifically, were found likely to play a role in the regulation of ciliary length in these cells. Cilia length measurements demonstrated increased ciliary length in RPE1 cells stably expressing a ubiquitination impaired CAV1 mutant protein. Furthermore, live cell imaging in the same cells revealed decreased CAV1 protein turnover at the cilium as the possible cause for this phenotype. In conclusion, we have generated a comprehensive list of cilia-specific proteins that are subject to regulation via ubiquitination which can serve to further our understanding of cilia biology in health and disease.

4.
J Cell Sci ; 136(5)2023 03 01.
Article in English | MEDLINE | ID: mdl-35403186

ABSTRACT

Primary cilia are microtubule-based sensory organelles whose assembly and function rely on the conserved bidirectional intraflagellar transport (IFT) system, which is powered by anterograde kinesin-2 and retrograde cytoplasmic dynein-2 motors. Nematodes additionally employ a cell-type-specific kinesin-3 motor, KLP-6, which moves within cilia independently of IFT and regulates ciliary content and function. Here, we provide evidence that a KLP-6 homolog, KIF13B, undergoes bursts of bidirectional movement within primary cilia of cultured immortalized human retinal pigment epithelial (hTERT-RPE1) cells. Anterograde and retrograde intraciliary velocities of KIF13B were similar to those of IFT (as assayed using IFT172-eGFP), but intraciliary movement of KIF13B required its own motor domain and appeared to be cell-type specific. Our work provides the first demonstration of motor-driven, intraciliary movement by a vertebrate kinesin other than kinesin-2 motors.


Subject(s)
Cilia , Kinesins , Adaptor Proteins, Signal Transducing/metabolism , Biological Transport , Cilia/metabolism , Cytoskeletal Proteins/metabolism , Flagella/metabolism , Humans , Kinesins/genetics , Microtubules
5.
J Cell Sci ; 135(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35673984

ABSTRACT

The kinesin-3 motor KIF13B functions in endocytosis, vesicle transport and regulation of ciliary length and signaling. Direct binding of the membrane-associated guanylate kinase (MAGUK) DLG1 to the MAGUK-binding stalk domain of KIF13B relieves motor autoinhibition and promotes microtubule plus-end-directed cargo transport. Here, we characterize angiomotin (AMOT) isoform 2 (p80, referred to as Ap80) as a novel KIF13B interactor that promotes binding of another MAGUK, the polarity protein and Crumbs complex component PALS1, to KIF13B. Live-cell imaging analysis indicated that Ap80 is concentrated at and recruits PALS1 to the base of the primary cilium, but is not a cargo of KIF13B itself. Consistent with a ciliary function for Ap80, its depletion led to elongated primary cilia and reduced agonist-induced ciliary accumulation of SMO, a key component of the Hedgehog signaling pathway, whereas Ap80 overexpression caused ciliary shortening. Our results suggest that Ap80 activates KIF13B cargo binding at the base of the primary cilium to regulate ciliary length, composition and signaling.


Subject(s)
Angiomotins , Membrane Proteins , Cilia/metabolism , Guanylate Kinases , Hedgehog Proteins/metabolism , Membrane Proteins/metabolism , Protein Isoforms
6.
Nat Rev Nephrol ; 15(4): 199-219, 2019 04.
Article in English | MEDLINE | ID: mdl-30733609

ABSTRACT

Primary cilia project in a single copy from the surface of most vertebrate cell types; they detect and transmit extracellular cues to regulate diverse cellular processes during development and to maintain tissue homeostasis. The sensory capacity of primary cilia relies on the coordinated trafficking and temporal localization of specific receptors and associated signal transduction modules in the cilium. The canonical Hedgehog (HH) pathway, for example, is a bona fide ciliary signalling system that regulates cell fate and self-renewal in development and tissue homeostasis. Specific receptors and associated signal transduction proteins can also localize to primary cilia in a cell type-dependent manner; available evidence suggests that the ciliary constellation of these proteins can temporally change to allow the cell to adapt to specific developmental and homeostatic cues. Consistent with important roles for primary cilia in signalling, mutations that lead to their dysfunction underlie a pleiotropic group of diseases and syndromic disorders termed ciliopathies, which affect many different tissues and organs of the body. In this Review, we highlight central mechanisms by which primary cilia coordinate HH, G protein-coupled receptor, WNT, receptor tyrosine kinase and transforming growth factor-ß (TGFß)/bone morphogenetic protein (BMP) signalling and illustrate how defects in the balanced output of ciliary signalling events are coupled to developmental disorders and disease progression.


Subject(s)
Cilia/metabolism , Ciliary Motility Disorders/metabolism , Hedgehog Proteins/metabolism , Organogenesis , Cell Differentiation , Cell Movement , Cilia/pathology , Ciliary Motility Disorders/pathology , Homeostasis , Humans , Signal Transduction
7.
Nat Struct Mol Biol ; 23(4): 324-32, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26974125

ABSTRACT

Signaling cascades depend on scaffold proteins that regulate the assembly of multiprotein complexes. Missense mutations in scaffold proteins are frequent in human cancer, but their relevance and mode of action are poorly understood. Here we show that cancer point mutations in the scaffold protein Axin derail Wnt signaling and promote tumor growth in vivo through a gain-of-function mechanism. The effect is conserved for both the human and Drosophila proteins. Mutated Axin forms nonamyloid nanometer-scale aggregates decorated with disordered tentacles, which 'rewire' the Axin interactome. Importantly, the tumor-suppressor activity of both the human and Drosophila Axin cancer mutants is rescued by preventing aggregation of a single nonconserved segment. Our findings establish a new paradigm for misregulation of signaling in cancer and show that targeting aggregation-prone stretches in mutated scaffolds holds attractive potential for cancer treatment.


Subject(s)
Axin Protein/genetics , Axin Protein/metabolism , Neoplasms/genetics , Point Mutation , Protein Aggregates , Wnt Signaling Pathway , Amino Acid Sequence , Animals , Axin Protein/analysis , Axin Protein/ultrastructure , Cell Line , Drosophila/chemistry , Drosophila/genetics , Drosophila/metabolism , Drosophila/ultrastructure , Drosophila Proteins/analysis , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , HEK293 Cells , Humans , Mice , Models, Molecular , Molecular Sequence Data , Mutation, Missense , Neoplasms/metabolism , Neoplasms/pathology , Protein Conformation , Protein Interaction Maps , Scattering, Small Angle , Sequence Alignment , X-Ray Diffraction
8.
Proc Natl Acad Sci U S A ; 112(18): 5732-7, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25901317

ABSTRACT

During Xenopus development, Wnt signaling is thought to function first after midblastula transition to regulate axial patterning via ß-catenin-mediated transcription. Here, we report that Wnt/glycogen synthase kinase 3 (GSK3) signaling functions posttranscriptionally already in mature oocytes via Wnt/stabilization of proteins (STOP) signaling. Wnt signaling is induced in oocytes after their entry into meiotic metaphase II and declines again upon exit into interphase. Wnt signaling inhibits Gsk3 and thereby protects proteins from polyubiquitination and degradation in mature oocytes. In a protein array screen, we identify a cluster of mitotic effector proteins that are polyubiquitinated in a Gsk3-dependent manner in Xenopus. Consequently inhibition of maternal Wnt/STOP signaling, but not ß-catenin signaling, leads to early cleavage arrest after fertilization. The results support a novel role for Wnt signaling in cell cycle progression independent of ß-catenin.


Subject(s)
Gene Expression Regulation, Developmental , Glycogen Synthase Kinase 3/metabolism , Wnt1 Protein/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Animals , Cell Cycle , Fertilization , Glycogen Synthase Kinase 3 beta , Humans , Mitosis , Oocytes/cytology , Protein Array Analysis , Signal Transduction , Transcription, Genetic
9.
Mol Cancer ; 10: 101, 2011 Aug 22.
Article in English | MEDLINE | ID: mdl-21859464

ABSTRACT

Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene strongly predispose to development of gastro-intestinal tumors. Central to the tumorigenic events in APC mutant cells is the uncontrolled stabilization and transcriptional activation of the protein ß-catenin. Many questions remain as to how APC controls ß-catenin degradation. Remarkably, the large C-terminal region of APC, which spans over 2000 amino acids and includes critical regions in downregulating ß-catenin, is predicted to be natively unfolded. Here we discuss how this uncommonly large disordered region may help to coordinate the multiple cellular functions of APC. Recently, a significant number of germline and somatic missense mutations in the central region of APC were linked to tumorigenesis in the colon as well as extra-intestinal tissues. We classify and localize all currently known missense mutations in the APC structure. The molecular basis by which these mutations interfere with the function of APC remains unresolved. We propose several mechanisms by which cancer-related missense mutations in the large disordered domain of APC may interfere with tumor suppressor activity. Insight in the underlying molecular events will be invaluable in the development of novel strategies to counter dysregulated Wnt signaling by APC mutations in cancer.


Subject(s)
Genes, APC/physiology , Mutation, Missense/physiology , Neoplasms/genetics , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/metabolism , Adenomatous Polyposis Coli Protein/chemistry , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/physiology , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Genes, Tumor Suppressor , Humans , Models, Biological , Protein Folding , Protein Structure, Tertiary/physiology
10.
J Mol Biol ; 405(3): 773-86, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21087614

ABSTRACT

The Wnt pathway tumor-suppressor protein Axin coordinates the formation of a critical multiprotein destruction complex that serves to downregulate ß-catenin protein levels, thereby preventing target gene activation. Given the lack of structural information on some of the major functional parts of Axin, it remains unresolved how the recruitment and positioning of Wnt pathway kinases, such as glycogen synthase kinase 3ß, are coordinated to bring about ß-catenin phosphorylation. Using various biochemical and biophysical methods, we demonstrate here that the central region of Axin that is implicated in binding glycogen synthase kinase 3ß and ß-catenin is natively unfolded. Our results support a model in which the unfolded nature of these critical scaffolding regions in Axin facilitates dynamic interactions with a kinase and its substrate, which in turn act upon each other.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Matrix Attachment Regions , Protein Unfolding , Repressor Proteins/chemistry , Tumor Suppressor Proteins/chemistry , Axin Protein , Binding Sites , Glycogen Synthase Kinase 3/chemistry , Glycogen Synthase Kinase 3 beta , Humans , Models, Molecular , Protein Binding , Wnt Proteins/chemistry , Wnt Proteins/metabolism , beta Catenin/chemistry
11.
Mol Cell Biol ; 28(7): 2342-57, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18212042

ABSTRACT

Cell proliferation and differentiation are governed by a finely controlled balance between repression and activation of gene expression. The vertebrate Ets transcriptional repressor Tel (ETV6) and its invertebrate orthologue Yan, play pivotal roles in cell fate determination although the precise mechanisms by which repression of gene expression by these factors is achieved are not clearly defined. Here, we report the identification and characterization of the primary site of sumoylation of Tel, lysine 11 (K11), which is highly conserved in vertebrates (except Danio rerio). We demonstrate that in cells PIAS3 binds to Tel and stimulates sumoylation of K11 in the nucleus. Both Tel monomers and oligomers are efficiently sumoylated on K11 in vitro; but in cells only Tel oligomers are found conjugated with SUMO, whereas sumoylation of Tel monomers is transitory and appears to sensitize them for proteasomal degradation. Mechanistically, sumoylation of K11 inhibits repression of gene expression by full-length Tel. In accordance with this observation, we found that sumoylation impedes Tel association with DNA. By contrast, a Tel isoform lacking K11 (TelM43) is strongly repressive. This isoform results from translation from an alternative initiation codon (M43) that is common to all Tel proteins that also contain the K11 sumoylation consensus site. We find that PIAS3 may have a dual, context-dependent influence on Tel; it mediates Tel sumoylation, but it also augments Tel's repressive function in a sumoylation-independent fashion. Our data support a model that suggests that PIAS-mediated sumoylation of K11 and the emergence of TelM43 in early vertebrates are linked and that this serves to refine spatiotemporal control of gene expression by Tel by establishing a pool of Tel molecules that are available either to be recycled to reinforce repression of gene expression or are degraded in a regulated fashion.


Subject(s)
Molecular Chaperones/physiology , Protein Inhibitors of Activated STAT/physiology , Protein Processing, Post-Translational/physiology , Proto-Oncogene Proteins c-ets/chemistry , Repressor Proteins/chemistry , SUMO-1 Protein/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Amino Acid Sequence , Animals , Biopolymers , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor/metabolism , Conserved Sequence , Humans , Lysine/chemistry , Molecular Sequence Data , Osteosarcoma/metabolism , Osteosarcoma/pathology , Proto-Oncogene Proteins c-ets/physiology , Repressor Proteins/physiology , Sequence Alignment , Sequence Homology, Amino Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Vertebrates/genetics , Vertebrates/metabolism , ETS Translocation Variant 6 Protein
SELECTION OF CITATIONS
SEARCH DETAIL