Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7: 44066, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28266646

ABSTRACT

A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light.

2.
Phys Rev Lett ; 115(6): 061801, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26296108

ABSTRACT

We report on a search for charged massive resonances decaying to top (t) and bottom (b) quarks in the full data set of proton-antiproton collisions at a center-of-mass energy of √[s]=1.96 TeV collected by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.5 fb(-1). No significant excess above the standard model background prediction is observed. We set 95% Bayesian credibility mass-dependent upper limits on the heavy charged-particle production cross section times branching ratio to tb. Using a standard model extension with a W'→tb and left-right-symmetric couplings as a benchmark model, we constrain the W' mass and couplings in the 300-900 GeV/c(2) range. The limits presented here are the most stringent for a charged resonance with mass in the range 300-600 GeV/c(2) decaying to top and bottom quarks.

3.
Phys Rev Lett ; 108(20): 201802, 2012 May 18.
Article in English | MEDLINE | ID: mdl-23003141

ABSTRACT

We report a new search for dark matter in a data sample of an integrated luminosity of 7.7 fb-1 of Tevatron pp[over ¯] collisions at √[s]=1.96 TeV, collected by the CDF II detector. We search for production of a dark-matter candidate, D, in association with a single top quark. We consider the hadronic decay mode of the top quark exclusively, yielding a final state of three jets with missing transverse energy. The data are consistent with the standard model; we thus set 95% confidence level upper limits on the cross section of the process pp[over ¯]→t+D as a function of the mass of the dark-matter candidate. The limits are approximately 0.5 pb for a dark-matter particle with mass in the range of 0-150 GeV/c2.

SELECTION OF CITATIONS
SEARCH DETAIL
...