Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Ther ; 15(3): 585-609, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302838

ABSTRACT

Diabetic macroangiopathy, a prevalent and severe complication of diabetes mellitus, significantly contributes to the increased morbidity and mortality rates among affected individuals. This complex disorder involves multifaceted molecular mechanisms that lead to the dysfunction and damage of large blood vessels, including atherosclerosis (AS) and peripheral arterial disease. Understanding the intricate pathways underlying the development and progression of diabetic macroangiopathy is crucial for the development of effective therapeutic interventions. This review aims to shed light on the molecular mechanism implicated in the pathogenesis of diabetic macroangiopathy. We delve into the intricate interplay of chronic inflammation, oxidative stress, endothelial dysfunction, and dysregulated angiogenesis, all of which contribute to the vascular complications observed in this disorder. By exploring the molecular mechanism involved in the disease we provide insight into potential therapeutic targets and strategies. Moreover, we discuss the current therapeutic approaches used for treating diabetic macroangiopathy, including glycemic control, lipid-lowering agents, and vascular interventions.

2.
Front Pharmacol ; 14: 1290023, 2023.
Article in English | MEDLINE | ID: mdl-38027018

ABSTRACT

Background: Diabetic cardiomyopathy (DCM) is one of the serious microvascular complications of diabetes mellitus. It is often associated with clinical manifestations such as arrhythmias and heart failure, and significantly reduces the quality of life and years of survival of patients. Endoplasmic reticulum stress (ERS) is the removal of unfolded and misfolded proteins and is an important mechanism for the maintenance of cellular homeostasis. ERS plays an important role in the pathogenesis of DCM by causing cardiomyocyte apoptosis, insulin resistance, calcium imbalance, myocardial hypertrophy and fibrosis. Targeting ERS is a new direction in the treatment of DCM. A large number of studies have shown that Chinese herbal medicine and active ingredients can significantly improve the clinical outcome of DCM patients through intervention in ERS and effects on myocardial structure and function, which has become one of the hot research directions. Purpose: The aim of this review is to elucidate and summarize the roles and mechanisms of Chinese herbal medicine and active ingredients that have the potential to modulate endoplasmic reticulum stress, thereby contributing to better management of DCM. Methods: Databases such as PubMed, Web of Science, China National Knowledge Internet, and Wanfang Data Knowledge Service Platform were used to search, analyze, and collect literature, in order to review the mechanisms by which phytochemicals inhibit the progression of DCM by targeting the ERS and its key signaling pathways. Keywords used included "diabetic cardiomyopathy" and "endoplasmic reticulum stress." Results: This review found that Chinese herbs and their active ingredients can regulate ERS through IRE1, ATF6, and PERK pathways to reduce cardiomyocyte apoptosis, ameliorate myocardial fibrosis, and attenuate myocardial hypertrophy for the treatment of DCM. Conclusion: A comprehensive source of information on potential ERS inhibitors is provided in this review. The analysis of the literature suggests that Chinese herbal medicine and its active ingredients can be used as potential drug candidates for the treatment of DCM. In short, we cannot ignore the role of traditional Chinese medicine in regulating ERS and treating DCM, and look forward to more research and new drugs to come.

SELECTION OF CITATIONS
SEARCH DETAIL
...