Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(27): 10464-10476, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38994401

ABSTRACT

The recent rediscovery of 1D and quasi-1D (q-1D) van der Waals (vdW) crystals has laid foundation for the realization of emergent electronic, optical, and quantum-confined physical phenomena in both bulk and at the nanoscale. Of these, the highly anisotropic q-1D vdW crystal structure and the visible-light optical/optoelectronic properties of antimony trisulfide (Sb2S3) have led to its widespread consideration as a promising building block for photovoltaic and non-volatile phase change devices. However, while these applications will greatly benefit from well-defined and sub-nanometer-thick q-1D structures, little has been known about feasible synthetic routes that can access single covalent chains of Sb2S3. In this work, we explore how encapsulation in single or multi-walled carbon nanotubes (SWCNTs or MWCNTs) and visible-range transparent boron nitride nanotubes (BNNTs) influences the growth and phase of Sb2S3 nanostructures. We demonstrate that nanotubes with smaller diameters had a more pronounced effect in the crystallographic growth direction and orientation of Sb2S3 nanostructures, promoting the crystallization of the guest structures along the long-axis [010]-direction. As such, we were able to reliably access well-ordered few to single covalent chains of Sb2S3 when synthesized within defect-free SWCNTs with sub-2 nm inner diameters. Intriguingly, we found that the degree of crystalline order of Sb2S3 nanostructures was strongly influenced by the presence of defects and discontinuities along the Sb2S3-nanotube interface. We show that amorphous nanowire domains of Sb2S3 form around defect sites in larger, multi-walled nanotubes that manifest inner wall defects and discontinuities, suggesting a means to manipulate the crystallization dynamics of confined sub-10 nm-thick Sb2S3 nanostructures within nanotubes. Lastly, we show that ultranarrow amorphous Sb2S3 can impart functionality onto isolable BNNTs with photocurrent generation in the pA range which, alongside the dispersibility of the Sb2S3@BNNTs, could be leveraged to easily fabricate photoresistors only a few nm in width. Altogether, our results serve to solidify the understanding of how q-1D vdW pnictogen chalcogenides crystallize within confined synthetic platforms and are a step towards realizing functional materials from ensembles of encapsulated heterostructures.

2.
Chem Mater ; 36(9): 4714-4725, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764749

ABSTRACT

Interfacing organic molecular groups with well-defined inorganic lattices, especially in low dimensions, enables synthetic routes for the rational manipulation of both their local or extended lattice structures and physical properties. While appreciably studied in two-dimensional systems, the influence of surface organic substituents on many known and emergent one-dimensional (1D) and quasi-1D (q-1D) crystals has remained underexplored. Herein, we demonstrate the surface functionalization of bulk and nanoscale Chevrel-like q-1D ionic crystals using In2Mo6Te6, a predicted q-1D Dirac semimetal, as the model phase. Using a series of alkyl ammonium (-NR4+; R = H, methyl, ethyl, butyl, and octyl) substituents with varying chain lengths, we demonstrate the systematic expansion of the intrachain c-axis direction and the contraction of the interchain a/b-axis direction with longer chain substituents. Additionally, we demonstrate the systematic expansion of the intrachain c-axis direction and the contraction of the interchain a/b-axis direction as the alkyl chain substituents become longer using a combination of powder X-ray diffraction and Raman experiments. Beyond the structural modulation that the substituted groups can impose on the lattice, we also found that the substitution of ammonium-based groups on the surface of the nanocrystals resulted in selective suspension in aqueous (NH4+-functionalized) or organic solvents (NOc4+-functionalized), imparted fluorescent character (Rhodamine B-functionalized), and modulated the electrical conductivity of the nanocrystal ensemble. Altogether, our results underscore the potential of organic-inorganic interfacing strategies to tune the structural and physical properties of rediscovered Chevrel-type q-1D ionic solids and open opportunities for the development of surface-addressable building blocks for hybrid electronic and optoelectronic devices at the nanoscale.

3.
Chem Sci ; 15(13): 4811-4823, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38550692

ABSTRACT

Anisotropy often yields unexpected structures and properties in the solid state. In van der Waals (vdW) solids comprised of 1D or quasi-1D (q-1D) building blocks, anisotropy in both intra- and inter-chain directions results in an abundance of crystalline packing motifs and drastically altered physical states. Among these, structurally and chemically complex 1D/q-1D vdW solids that display topologically protected states, unique optical properties, and enhanced electrical transport properties in 1D are sought after owing to their potential as building blocks for next-generation quantum devices that approach the sub-nanometer regime. Yet, the access to such facet- and edge-specific physical states is still limited by the stochastic nature of micromechanical exfoliation. Here, we demonstrate that the representative Bi4I4 phase, an established pnictohalide q-1D vdW topological insulator in the bulk, can be crystallized from the vapor phase either into well-defined nanowires or quasi-2D nanosheets. We find that gold nanoparticles (Au NPs) on the growth substrate, in conjunction with the highly anisotropic structure of Bi4I4 common to many q-1D vdW crystals, direct the dimensionality of high-purity Bi4I4 nanostructures. Systematic variation of Au NP diameters, Bi : I precursor ratios, and growth-deposition temperatures reveal that Au NPs generally act as nucleation sites for vapor-solid (VS) growth of Bi4I4 nanowires. Strikingly, post-synthesis analyses of the elemental composition of 20 nm Au NPs on the substrate surface show an equisotichiometric 1 : 1 ratio of Bi to I within the Au NP that triggers the vapor-liquid-solid (VLS) growth of [001]-oriented quasi-2D nanosheets comprised of laterally-ordered [Bi4I4]n chains along the perpendicular [100] direction. We rationalize the observed bimodal growth pathways and the morphologically distinct nanostructures based on crystallization habits and orientations of the nanostructures, Bi : I ratios in the resulting Au NPs post-synthesis, and the orientation of stereochemically active Bi lone pairs between adjacent chains. We anticipate that these growth pathways are adaptable to the synthesis of emergent halide- and chalcogen-based 1D vdW nanocrystals with diverse physical and quantum properties.

4.
Nano Lett ; 24(1): 493-500, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38148179

ABSTRACT

Compositional tunability, an indispensable parameter for modifying the properties of materials, can open up new applications for van der Waals (vdW) layered materials such as transition-metal dichalcogenides (TMDCs). To date, multielement alloy TMDC layers are obtained via exfoliation from bulk polycrystalline powders. Here, we demonstrate direct deposition of high-entropy alloy disulfide, (VNbMoTaW)S2, layers with controllable thicknesses on free-standing graphene membranes and on bare and hBN-covered Al2O3(0001) substrates via ultra-high-vacuum reactive dc magnetron sputtering of the VNbMoTaW target in Kr and H2S gas mixtures. Using a combination of density functional theory calculations, Raman spectroscopy, X-ray diffraction, scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, we determine that the as-deposited layers are single-phase, 2H-structured, and 0001-oriented (V0.10Nb0.16Mo0.19Ta0.28W0.27)S2.44. Our synthesis route is general and applicable for heteroepitaxial growth of a wide variety of TMDC alloys and potentially other multielement alloy vdW compounds with the desired compositions.

5.
J Am Chem Soc ; 145(41): 22413-22424, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37713247

ABSTRACT

Unusual behavior in solids emerges from the complex interplay between crystalline order, composition, and dimensionality. In crystals comprising weakly bound one-dimensional (1D) or quasi-1D (q-1D) chains, properties such as charge density waves, topologically protected states, and indirect-to-direct band gap crossovers have been predicted to arise. However, the experimental demonstration of many of these nascent physics in 1D or q-1D van der Waals (vdW) crystals is obscured by the highly anisotropic bonding between the chains, stochasticity of top-down exfoliation, and the lack of synthetic strategies to control bottom-up growth. Herein, we report the directed crystallization of a model q-1D vdW phase, Sb2S3, into dimensionally resolved nanostructures. We demonstrate the uncatalyzed growth of highly crystalline Sb2S3 nanowires, nanoribbons, and quasi-2D nanosheets with thicknesses in the range of 10 to 100 nm from the bottom-up crystallization of [Sb4S6]n chains. We found that dimensionally resolved nanostructures emerge from two distinct chemical vapor growth pathways defined by diverse covalent intrachain and anisotropic vdW interchain interactions and controlled precursor ratios in the vapor phase. At sub-100 nm nanostructure thicknesses, we observe the hardening of phonon modes, blue-shifting of optical band gaps, and the emergence of a new high-energy photoluminescence peak. The directional growth of weakly bound 1D ribbons or chains into well-resolved nanocrystalline morphologies provides opportunities to develop ordered nanostructures and hierarchical assemblies that are suitable for a wide range of optoelectronic and quantum devices.

8.
Microsc Microanal ; 29(Supplement_1): 649-650, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37613320
9.
Microsc Microanal ; 29(Supplement_1): 348-349, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37613505
11.
Nat Commun ; 14(1): 1940, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37024455

ABSTRACT

Oxide solid electrolytes (OSEs) have the potential to achieve improved safety and energy density for lithium-ion batteries, but their high grain-boundary (GB) resistance generally is a bottleneck. In the well-studied perovskite oxide solid electrolyte, Li3xLa2/3-xTiO3 (LLTO), the ionic conductivity of grain boundaries is about three orders of magnitude lower than that of the bulk. In contrast, the related Li0.375Sr0.4375Ta0.75Zr0.25O3 (LSTZ0.75) perovskite exhibits low grain boundary resistance for reasons yet unknown. Here, we use aberration-corrected scanning transmission electron microscopy and spectroscopy, along with an active learning moment tensor potential, to reveal the atomic scale structure and composition of LSTZ0.75 grain boundaries. Vibrational electron energy loss spectroscopy is applied for the first time to reveal atomically resolved vibrations at grain boundaries of LSTZ0.75 and to characterize the otherwise unmeasurable Li distribution therein. We find that Li depletion, which is a major reason for the low grain boundary ionic conductivity of LLTO, is absent for the grain boundaries of LSTZ0.75. Instead, the low grain boundary resistivity of LSTZ0.75 is attributed to the formation of a nanoscale defective cubic perovskite interfacial structure that contained abundant vacancies. Our study provides new insights into the atomic scale mechanisms of low grain boundary resistivity.

12.
Nano Lett ; 22(23): 9319-9326, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36413202

ABSTRACT

Generation and manipulation of phonon polaritons are of paramount importance for understanding the interaction between an electromagnetic field and dielectric materials and furthering their application in mid-infrared optical communication. However, the formation of tunable one-dimensional phonon polaritons has been rarely realized in van der Waals layered structures. Here we report the discovery of curvature-induced phonon polaritons localized at the crease of folded hexagonal boron nitrides (h-BNs) with a few atomic layers using monochromated electron energy-loss spectroscopy. Compared to bulk regions, the creased-localized signals undergo an abnormal blue-shift of 1.4 meV. First-principles calculations reveal that the energy shift arises from the optical phonon hardening in the curled region. Interestingly, the curvature-induced phonon polariton can also be controllably achieved via an electron-beam etching approach. This work opens an avenue of tailoring local electromagnetic response and creating unique phonon polariton modes in van der Waals layered materials for diverse applications.

13.
Chem Mater ; 34(17): 7788-7798, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36117883

ABSTRACT

Lithium-ion batteries continue to be a critical part of the search for enhanced energy storage solutions. Understanding the stability of interfaces (surfaces and grain boundaries) is one of the most crucial aspects of cathode design to improve the capacity and cyclability of batteries. Interfacial engineering through chemical modification offers the opportunity to create metastable states in the cathodes to inhibit common degradation mechanisms. Here, we demonstrate how atomistic simulations can effectively evaluate dopant interfacial segregation trends and be an effective predictive tool for cathode design despite the intrinsic approximations. We computationally studied two surfaces, {001} and {104}, and grain boundaries, Σ3 and Σ5, of LiCoO2 to investigate the segregation potential and stabilization effect of dopants. Isovalent and aliovalent dopants (Mg2+, Ca2+, Sr2+, Sc3+, Y3+, Gd3+, La3+, Al3+, Ti4+, Sn4+, Zr4+, V5+) were studied by replacing the Co3+ sites in all four of the constructed interfaces. The segregation energies of the dopants increased with the ionic radius of the dopant. They exhibited a linear dependence on the ionic size for divalent, trivalent, and quadrivalent dopants for surfaces and grain boundaries. The magnitude of the segregation potential also depended on the surface chemistry and grain boundary structure, showing higher segregation energies for the Σ5 grain boundary compared with the lower energy Σ3 boundary and higher for the {104} surface compared to the {001}. Lanthanum-doped nanoparticles were synthesized and imaged with scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) to validate the computational results, revealing the predicted lanthanum enrichment at grain boundaries and both the {001} and the {104} surfaces.

14.
Nature ; 606(7913): 292-297, 2022 06.
Article in English | MEDLINE | ID: mdl-35676428

ABSTRACT

Spatially resolved vibrational mapping of nanostructures is indispensable to the development and understanding of thermal nanodevices1, modulation of thermal transport2 and novel nanostructured thermoelectric materials3-5. Through the engineering of complex structures, such as alloys, nanostructures and superlattice interfaces, one can significantly alter the propagation of phonons and suppress material thermal conductivity while maintaining electrical conductivity2. There have been no correlative experiments that spatially track the modulation of phonon properties in and around nanostructures due to spatial resolution limitations of conventional optical phonon detection techniques. Here we demonstrate two-dimensional spatial mapping of phonons in a single silicon-germanium (SiGe) quantum dot (QD) using monochromated electron energy loss spectroscopy in the transmission electron microscope. Tracking the variation of the Si optical mode in and around the QD, we observe the nanoscale modification of the composition-induced red shift. We observe non-equilibrium phonons that only exist near the interface and, furthermore, develop a novel technique to differentially map phonon momenta, providing direct evidence that the interplay between diffuse and specular reflection largely depends on the detailed atomistic structure: a major advancement in the field. Our work unveils the non-equilibrium phonon dynamics at nanoscale interfaces and can be used to study actual nanodevices and aid in the understanding of heat dissipation near nanoscale hotspots, which is crucial for future high-performance nanoelectronics.

15.
Nature ; 589(7840): 65-69, 2021 01.
Article in English | MEDLINE | ID: mdl-33408374

ABSTRACT

Crystal defects affect the thermal and heat-transport properties of materials by scattering phonons and modifying phonon spectra1-8. To appreciate how imperfections in solids influence thermal conductivity and diffusivity, it is thus essential to understand phonon-defect interactions. Sophisticated theories are available to explore such interactions, but experimental validation is limited because most phonon-detecting spectroscopic methods do not reach the high spatial resolution needed to resolve local vibrational spectra near individual defects. Here we demonstrate that space- and angle-resolved vibrational spectroscopy in a transmission electron microscope makes it possible to map the vibrational spectra of individual crystal defects. We detect a red shift of several millielectronvolts in the energy of acoustic vibration modes near a single stacking fault in cubic silicon carbide, together with substantial changes in their intensity, and find that these changes are confined to within a few nanometres of the stacking fault. These observations illustrate that the capabilities of a state-of-the-art transmission electron microscope open the door to the direct mapping of phonon propagation around defects, which is expected to provide useful guidance for engineering the thermal properties of materials.

17.
J Am Chem Soc ; 142(1): 134-145, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31779305

ABSTRACT

Silicon germanium (SiGe) is a multifunctional material considered for quantum computing, neuromorphic devices, and CMOS transistors. However, implementation of SiGe in nanoscale electronic devices necessitates suppression of surface states dominating the electronic properties. The absence of a stable and passive surface oxide for SiGe results in the formation of charge traps at the SiGe-oxide interface induced by GeOx. In an ideal ALD process in which oxide is grown layer by layer, the GeOx formation should be prevented with selective surface oxidation (i.e., formation of an SiOx interface) by controlling the oxidant dose in the first few ALD cycles of the oxide deposition on SiGe. However, in a real ALD process, the interface evolves during the entire ALD oxide deposition due to diffusion of reactant species through the gate oxide. In this work, this diffusion process in nonideal ALD is investigated and exploited: the diffusion through the oxide during ALD is utilized to passivate the interfacial defects by employing ozone as a secondary oxidant. Periodic ozone exposure during gate oxide ALD on SiGe is shown to reduce the integrated trap density (Dit) across the band gap by nearly 1 order of magnitude in Al2O3 (<6 × 1010 cm-2) and in HfO2 (<3.9 × 1011 cm-2) by forming a SiOx-rich interface on SiGe. Depletion of Ge from the interfacial layer (IL) by enhancement of volatile GeOx formation and consequent desorption from the SiGe with ozone insertion during the ALD growth process is confirmed by electron energy loss spectroscopy (STEM-EELS) and hypothesized to be the mechanism for reduction of the interfacial defects. In this work, the nanoscale mechanism for defect suppression at the SiGe-oxide interface is demonstrated, which is engineering of diffusion species in the ALD process due to facile diffusion of reactant species in nonideal ALD.

18.
Nature ; 575(7783): 480-484, 2019 11.
Article in English | MEDLINE | ID: mdl-31610544

ABSTRACT

The distribution of charge density in materials dictates their chemical bonding, electronic transport, and optical and mechanical properties. Indirectly measuring the charge density of bulk materials is possible through X-ray or electron diffraction techniques by fitting their structure factors1-3, but only if the sample is perfectly homogeneous within the area illuminated by the beam. Meanwhile, scanning tunnelling microscopy and atomic force microscopy enable us to see chemical bonds, but only on the surface4-6. It remains a challenge to resolve charge density in nanostructures and functional materials with imperfect crystalline structures-such as those with defects, interfaces or boundaries at which new physics emerges. Here we describe the development of a real-space imaging technique that can directly map the local charge density of crystalline materials with sub-ångström resolution, using scanning transmission electron microscopy alongside an angle-resolved pixellated fast-electron detector. Using this technique, we image the interfacial charge distribution and ferroelectric polarization in a SrTiO3/BiFeO3 heterojunction in four dimensions, and discover charge accumulation at the interface that is induced by the penetration of the polarization field of BiFeO3. We validate this finding through side-by-side comparison with density functional theory calculations. Our charge-density imaging method advances electron microscopy from detecting atoms to imaging electron distributions, providing a new way of studying local bonding in crystalline solids.

19.
Nano Lett ; 19(10): 6812-6818, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31508969

ABSTRACT

Ferroelectric heterostructures, with capability of storing data at ultrahigh densities, could act as the platform for next-generation memories. The development of new device paradigms has been hampered by the long-standing notion of inevitable ferroelectricity suppression under reduced dimensions. Despite recent experimental observation of stable polarized states in ferroelectric ultrathin films, the out-of-plane polarization components in these films are strongly attenuated compared to thicker films, implying a degradation of device performance in electronic miniaturization processes. Here, in a model system of BiFeO3/La0.7Sr0.3MnO3, we report observation of a dramatic out-of-plane polarization enhancement that occurs with decreasing film thickness. Our electron microscopy analysis coupled with phase-field simulations reveals a polarization-enhancement mechanism that is dominated by the accumulation of oxygen vacancies at interfacial layers. The results shed light on the interplay between polarization and defects in nanoscale ferroelectrics and suggest a route to enhance functionality in oxide devices.

20.
Nano Lett ; 19(10): 7494-7502, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31517496

ABSTRACT

Measuring temperature in nanoscale is crucial for the research and development of microelectronic devices. Plasmon resonance has been utilized to map local temperature gradient in metallic materials (Al) due to their large coefficients of thermal expansion. However, most semiconductors (including Si and SiC) possess much smaller coefficients of thermal expansion due to their strong covalent bonding in crystal structure, for which the plasmon-based temperature measurement becomes unreliable. Here, we report an unexpected strong, thermally induced phonon energy shift in SiC by spatially resolved vibrational spectroscopy in transmission electron microscopy with in situ heating, demonstrating that this shift can be applied as a useful tool for measuring nanoscale temperature. When a bulk phonon spectrum is used, the spatial resolution of vibrational spectroscopy can be as high as one nanometer. Molecular dynamics simulations reveal that lattice expansion only contributes a small fraction of phonon energy shift and that vibrant motions away from the bonds are predominate factors. This study gains deeper insight into the understanding of dynamic behaviors of the phonon and provides a new avenue to measure local temperature in nanodevices.

SELECTION OF CITATIONS
SEARCH DETAIL
...