Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Foods ; 13(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39123656

ABSTRACT

Reactive oxygen species (ROS) play a critical role in oxidative stress and cellular damage, underscoring the importance of identifying potent antioxidants. This research focuses on the antioxidant capabilities of Riceberry™-derived peptides and their protective effects against oxidative and endoplasmic reticulum (ER) stress in L929 cells. By simulating human digestion, Riceberry™ protein hydrolysate was generated, from which antioxidant peptides were isolated using OFFGEL electrophoresis and LC-MS/MS. Notably, an octapeptide (VPAGVAHW) from the hydrolysate demonstrated significant antioxidant activity, particularly against oxidative stress induced by iodoacetic acid (IAA) or hydrogen peroxide (H2O2) and ER stress caused by tunicamycin (TM) in L929 cells. This peptide's effectiveness was evident in its dose-dependent ability to enhance cell viability and mitigate stress effects, although its efficiency varied with the stress inducer. Our study suggests that Riceberry™-derived peptides could serve as a promising natural antioxidant with potential benefits for health promotion and applications in the food industry, offering an environmentally friendly alternative to synthetic antioxidants.

3.
Mol Nutr Food Res ; : e2400230, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39086054

ABSTRACT

Tight junction disruption can lead to pathogenesis of various diseases without therapeutic strategy to recover intestinal barrier integrity. The main objective of this study is to demonstrate the effect of Solanum melongena L. extract (SMLE) on intestinal tight junction recovery and its underlying mechanism. Intestinal barrier function is attenuated by Ca2+ depletion. SMLE treatment increased TER value across T84 cell monolayers. Permeability assay reveals that Ca2+ depletion promotes 4-kDa FITC-dextran permeability, but not 70-kDa FITC-dextran. SMLE suppresses the rate of 4-kDa FITC-dextran permeability, indicating that SMLE inhibits paracellular leak pathway permeability. SMLE-mediated TER increase and leak pathway suppression are abolished by neither calcium/calmodulin-dependent protein kinase kinase ß (CaMKKß) inhibitor nor AMP-activated protein kinase (AMPK) inhibitor. Furthermore, mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) inhibitors have no effects on SMLE-mediated TER increase and leak pathway suppression. Interestingly, SMLE is unable to enhance TER value and diminish leak pathway permeability in T84 cell monolayers pre-treated with sirtuin-1 (SIRT-1) inhibitor. Immunofluorescence staining reveals that SMLE enhances re-assembly of tight junction proteins, including occludin and ZO-1 to intercellular space but this effect is abolished by SIRT-1 inhibitor. These data suggest that SMLE promotes intestinal tight junction re-assembly via SIRT-1-dependent manner.

4.
Bioorg Chem ; 150: 107530, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852310

ABSTRACT

The Asp-tRNAAsn/Glu-tRNAGln amidotransferase (GatCAB) has been proposed as a novel antibacterial drug target due to its indispensability in prominent human pathogens. While several inhibitors with in vitro activity have been identified, none have been demonstrated to have potent activity against live bacteria. In this work, seven non-hydrolyzable transition state mimics of GatCAB were synthesized and tested as the transamidase inhibitors against GatCAB from the human pathogen Helicobacter pylori. Notably, the methyl sulfone analog of glutamyl-adenosine significantly reduced GatCAB's transamination rate. Additionally, four lipid-conjugates of these mimics displayed antibacterial activity against Bacillus subtilis, likely due to enhanced cell permeability. Inhibitory activity against GatCAB in live bacteria was confirmed using a sensitive gain-of-function dual luciferase reporter in Mycobacterium bovis-BCG. Only the lipid-conjugated methyl sulfone analog exhibited a significant increase in mistranslation rate, highlighting its cell permeability and inhibitory potential. This study provides insights for developing urgently needed novel antibacterial agents amidst emerging antimicrobial drug resistance.


Subject(s)
Anti-Bacterial Agents , Enzyme Inhibitors , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Bacillus subtilis/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine/chemistry , Adenosine/chemical synthesis , Helicobacter pylori/drug effects , Helicobacter pylori/enzymology , Nitrogenous Group Transferases/antagonists & inhibitors , Nitrogenous Group Transferases/metabolism , Humans
5.
bioRxiv ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38915640

ABSTRACT

Antibacterial proteins inhibiting Pseudomonas aeruginosa have been identified in various phages and explored as antibiotic alternatives. Here, we isolated a phiKZ-like phage, Churi, which encodes 364 open reading frames. We examined 15 early-expressed phage proteins for their ability to inhibit bacterial growth, and found that gp335, closely related to phiKZ-gp14, exhibits antibacterial activity. Similar to phiKZ-gp14, recently shown to form a complex with the P. aeruginosa ribosome, we predict experimentally that gp335 interacts with ribosomal proteins, suggesting its involvement in protein translation. GFP-tagged gp335 clusters around the phage nucleus as early as 15 minutes post-infection and remains associated with it throughout the infection, suggesting its role in protein expression in the cell cytoplasm. CRISPR-Cas13-mediated deletion of gp355 reveals that the mutant phage has a prolonged latent period. Altogether, we demonstrate that gp335 is an antibacterial protein of nucleus-forming phages that associates with the ribosomes at the phage nucleus.

6.
BMC Oral Health ; 24(1): 680, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867181

ABSTRACT

BACKGROUND: To investigate the effect of a 50% ascorbic acid with 50% citric acid solution on the immediate shear bond strength (SBS) of metallic brackets after tooth bleaching. The enamel etching pattern and the required quantity of these combined acids as antioxidants following 35% hydrogen peroxide (HP) bleaching were also determined. METHODS: The stability of the solution at room temperature was assessed at various time intervals. Fifty teeth were randomly divided into five groups: non-bleached (G1), bleached then acid etched (G2), bleached followed by a 10-minute treatment with 10% sodium ascorbate and acid etched (G3), 5-minute treatment with 50% ascorbic acid (G4), and 5-minute treatment with a combination of 50% ascorbic acid and 50% citric acid (G5). Groups G2, G3, G4 and G5 were bleached by 35% HP gel for a total of 32 min. Acid etching in groups G1, G2, and G3 was performed using 37% phosphoric acid (Ormco®, Orange, CA, USA) for 15 s. In all groups, metal brackets were immediately bonded using Transbond™ XT primer and Transbond™ PLUS adhesive, with light curing for 40 s. The SBS was tested with a universal testing machine, and statistical analysis was conducted using one-way ANOVA followed by Tukey's HSD test. The level of significance was set at p < 0.05 for all statistical tests. RESULTS: Stability tests demonstrated that the combined acids remained effective for up to 21 days. Group G5 significantly increased the SBS of bleached teeth to the level of G1 (p < 0.05), while G3 did not achieve the same increase in SBS (p > 0.05). SEM analysis revealed enamel etching patterns similar to those of both control groups (G1 and G2). Kinetic studies at 6 min indicated that the antioxidation in G5 reacted 0.2 mmole lower than in G3 and G4. CONCLUSION: 5-minute application of the combined acids enhanced the SBS of bleached teeth comparable to unbleached teeth. The combined acids remain stable over two weeks, presenting a time-efficient, single-step solution for antioxidant application and enamel etching in orthodontic bracket bonding.


Subject(s)
Ascorbic Acid , Citric Acid , Dental Bonding , Dental Enamel , Orthodontic Brackets , Shear Strength , Tooth Bleaching , Ascorbic Acid/pharmacology , Citric Acid/pharmacology , Citric Acid/chemistry , Tooth Bleaching/methods , Humans , Pilot Projects , Dental Enamel/drug effects , Dental Bonding/methods , Acid Etching, Dental , Antioxidants/pharmacology , Surface Properties , Time Factors , Hydrogen Peroxide/chemistry , Tooth Bleaching Agents/chemistry , Phosphoric Acids , Dental Stress Analysis
7.
Chemistry ; 30(31): e202400913, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38563862

ABSTRACT

A novel method for synthesizing cationic styryl dyes through a nucleic acid-templated reaction has been developed. This approach overcomes issues associated with traditional synthesis methods, such as harsh conditions, low throughput, and wasteful chemicals. The presence of a nucleic acid template accelerated the styryl dye formation from quaternized heteroaromatic and cationic aldehyde substrates. These styryl dyes show remarkable optical properties change when bound to nucleic acids, hence the success of the synthesis could be readily monitored in situ by UV-Vis and fluorescence spectroscopy and the optical properties data were also observable at the same time. This method provides the desired products from a broad range of coupling partners. By employing different substrates and templates, it is possible to identify new dyes that can bind to a specific type of nucleic acid such as a G-quadruplex. The templated dye synthesis is also successfully demonstrated in live HeLa cells. This approach is a powerful tool for the rapid synthesis and screening of dyes specific for diverse types of nucleic acids or cellular organelles, facilitating new biological discoveries.


Subject(s)
Cations , Fluorescent Dyes , Nucleic Acids , Humans , HeLa Cells , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Nucleic Acids/chemistry , Nucleic Acids/chemical synthesis , Cations/chemistry , Spectrometry, Fluorescence , G-Quadruplexes , DNA/chemistry , Styrenes/chemistry , Styrenes/chemical synthesis , Coloring Agents/chemistry , Coloring Agents/chemical synthesis
8.
Nat Prod Res ; : 1-9, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646864

ABSTRACT

One new alkyl benzoquinone, paphionone (1), one new trans-stilbenoid, (E)-6,5'-dihydroxy-2,3'-dimethoxystilbene (2), and eight known stilbenoids and flavonoids (3-10) were isolated from the leaves and roots of Paphiopedilum exul (Orchidaceae). Their chemical structures were determined based on IR, ECD, MS and NMR analyses. Cytotoxicity of all isolated compounds towards human hepatocellular carcinoma (HepG2) cell line was examined in vitro by MTT assay. The para-hydroxybenzyl substituted stilbene 10 was potently cytotoxic to the cancer cells, with an IC50 value of 4.80 ± 1.10 µM (selectivity index = 20.83). All compounds were non-toxic to normal human embryo fibroblast (OUMS-36) cell line.

9.
Chem Asian J ; 19(6): e202301081, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38377056

ABSTRACT

A series of novel styryl dye derivatives incorporating indolium and quinolinium core structures were successfully synthesized to explore their interacting and binding capabilities with tau aggregates in vitro and in cells. The synthesized dyes exhibited enhanced fluorescence emission in viscous environments due to the rotatable bond confinement in the core structure. Dye 4, containing a quinolinium moeity and featuring two cationic sites, demonstrated a 28-fold increase in fluorescence emission upon binding to tau aggregates. This dye could also stain tau aggregates in living cells, confirmed by cell imaging using confocal fluorescence microscopy. A molecular docking study was conducted to provide additional visualization and support for binding interactions. This work offers novel and non-cytotoxic fluorescent probes with desirable photophysical properties, which could potentially be used for studying tau aggregates in living cells, prompting further development of new fluorescent probes for early Alzheimer's disease detection.


Subject(s)
Fluorescent Dyes , Fluorescent Dyes/chemistry , Molecular Docking Simulation , Microscopy, Fluorescence
10.
Heliyon ; 10(4): e25763, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404884

ABSTRACT

Purpose: Cultured lichen mycobionts are valuable sources of new natural compounds. Mycobiont of Graphis handelii growing in Vietnam was isolated, cultivated and chemically investigated. The crude extract of this cultured mycobiont showed potent alpha-glucosidase inhibition with an IC50 value of 50 µg/mL. Methods: Multiple chromatographic methods were applied to the extract to isolate compounds. The combination of Nuclear Magnetic Resonance analysis and high-resolution mass spectroscopy determined their chemical structures. Electrophilic bromination/chlorination was applied to obtain new derivatives using NaBr/H2O2 and NaCl/H2O2 reagents. Compounds were evaluated for enzyme inhibitory activities, including alpha-glucosidase inhibition, HIV-1 reverse transcriptase inhibition, SARS-CoV-2 main protease (Mpro) inhibition, anti-inflammatory activity, and cytotoxicity against several cancer cell lines. A molecular docking study for anti-SARS-CoV-2 was conducted to understand the inhibitory mechanism. Results: A new diphenyl ether, handelone (1) and a known compound xylarinic acid A (2) were isolated and elucidated. Four synthetic products 6'-bromohandelone (1a), 2'-bromohandelone (1b), 2',6'-dibromohandelone (1c), and 2',6'-dichlorohandelone (1d) were prepared. Compound 1 showed good activity against Mpro with an IC50 value of 5.2 µM but it showed weak or inactive activity in other tests. Other compounds were inactive in all assays. Conclusion: A new compound, handelone (1) was isolated from the cultured mycobiont of Graphis handelii. From these compounds, four new derivatives were prepared. Compound 1 showed good activity against Mpro with an IC50 value of 5.2 µM but it showed weak or inactive activity in other tests. Other compounds were inactive in all assays.

11.
Sci Rep ; 14(1): 3639, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351065

ABSTRACT

The prevalence of HIV-1 infection continues to pose a significant global public health issue, highlighting the need for antiretroviral drugs that target viral proteins to reduce viral replication. One such target is HIV-1 protease (PR), responsible for cleaving viral polyproteins, leading to the maturation of viral proteins. While darunavir (DRV) is a potent HIV-1 PR inhibitor, drug resistance can arise due to mutations in HIV-1 PR. To address this issue, we developed a novel approach using the fragment molecular orbital (FMO) method and structure-based drug design to create DRV analogs. Using combinatorial programming, we generated novel analogs freely accessible via an on-the-cloud mode implemented in Google Colab, Combined Analog generator Tool (CAT). The designed analogs underwent cascade screening through molecular docking with HIV-1 PR wild-type and major mutations at the active site. Molecular dynamics (MD) simulations confirmed the assess ligand binding and susceptibility of screened designed analogs. Our findings indicate that the three designed analogs guided by FMO, 19-0-14-3, 19-8-10-0, and 19-8-14-3, are superior to DRV and have the potential to serve as efficient PR inhibitors. These findings demonstrate the effectiveness of our approach and its potential to be used in further studies for developing new antiretroviral drugs.


Subject(s)
HIV Infections , HIV Protease Inhibitors , HIV-1 , Humans , Darunavir/pharmacology , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/chemistry , HIV-1/genetics , Molecular Docking Simulation , Sulfonamides/pharmacology , Viral Proteins/genetics , HIV Protease/metabolism , Mutation , Drug Resistance, Viral/genetics
12.
J Comput Chem ; 45(13): 953-968, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38174739

ABSTRACT

In the pursuit of novel antiretroviral therapies for human immunodeficiency virus type-1 (HIV-1) proteases (PRs), recent improvements in drug discovery have embraced machine learning (ML) techniques to guide the design process. This study employs ensemble learning models to identify crucial substructures as significant features for drug development. Using molecular docking techniques, a collection of 160 darunavir (DRV) analogs was designed based on these key substructures and subsequently screened using molecular docking techniques. Chemical structures with high fitness scores were selected, combined, and one-dimensional (1D) screening based on beyond Lipinski's rule of five (bRo5) and ADME (absorption, distribution, metabolism, and excretion) prediction implemented in the Combined Analog generator Tool (CAT) program. A total of 473 screened analogs were subjected to docking analysis through convolutional neural networks scoring function against both the wild-type (WT) and 12 major mutated PRs. DRV analogs with negative changes in binding free energy ( ΔΔ G bind ) compared to DRV could be categorized into four attractive groups based on their interactions with the majority of vital PRs. The analysis of interaction profiles revealed that potent designed analogs, targeting both WT and mutant PRs, exhibited interactions with common key amino acid residues. This observation further confirms that the ML model-guided approach effectively identified the substructures that play a crucial role in potent analogs. It is expected to function as a powerful computational tool, offering valuable guidance in the identification of chemical substructures for synthesis and subsequent experimental testing.


Subject(s)
HIV Infections , HIV Protease Inhibitors , HIV-1 , Humans , Darunavir/pharmacology , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/chemistry , Peptide Hydrolases/pharmacology , Molecular Docking Simulation , HIV Protease/chemistry , Drug Discovery
SELECTION OF CITATIONS
SEARCH DETAIL