Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cell Biol ; 25(7): 989-1003, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37386153

ABSTRACT

Fasting triggers diverse physiological adaptations including increases in circulating fatty acids and mitochondrial respiration to facilitate organismal survival. The mechanisms driving mitochondrial adaptations and respiratory sufficiency during fasting remain incompletely understood. Here we show that fasting or lipid availability stimulates mTORC2 activity. Activation of mTORC2 and phosphorylation of its downstream target NDRG1 at serine 336 sustains mitochondrial fission and respiratory sufficiency. Time-lapse imaging shows that NDRG1, but not the phosphorylation-deficient NDRG1Ser336Ala mutant, engages with mitochondria to facilitate fission in control cells, as well as in those lacking DRP1. Using proteomics, a small interfering RNA screen, and epistasis experiments, we show that mTORC2-phosphorylated NDRG1 cooperates with small GTPase CDC42 and effectors and regulators of CDC42 to orchestrate fission. Accordingly, RictorKO, NDRG1Ser336Ala mutants and Cdc42-deficient cells each display mitochondrial phenotypes reminiscent of fission failure. During nutrient surplus, mTOR complexes perform anabolic functions; however, paradoxical reactivation of mTORC2 during fasting unexpectedly drives mitochondrial fission and respiration.


Subject(s)
Mitochondrial Dynamics , TOR Serine-Threonine Kinases , Mechanistic Target of Rapamycin Complex 2/genetics , TOR Serine-Threonine Kinases/metabolism , Carrier Proteins/metabolism , Phosphorylation , Fasting
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35193955

ABSTRACT

In search of redox mechanisms in breast cancer, we uncovered a striking role for glutathione peroxidase 2 (GPx2) in oncogenic signaling and patient survival. GPx2 loss stimulates malignant progression due to reactive oxygen species/hypoxia inducible factor-α (HIF1α)/VEGFA (vascular endothelial growth factor A) signaling, causing poor perfusion and hypoxia, which were reversed by GPx2 reexpression or HIF1α inhibition. Ingenuity Pathway Analysis revealed a link between GPx2 loss, tumor angiogenesis, metabolic modulation, and HIF1α signaling. Single-cell RNA analysis and bioenergetic profiling revealed that GPx2 loss stimulated the Warburg effect in most tumor cell subpopulations, except for one cluster, which was capable of oxidative phosphorylation and glycolysis, as confirmed by coexpression of phosphorylated-AMPK and GLUT1. These findings underscore a unique role for redox signaling by GPx2 dysregulation in breast cancer, underlying tumor heterogeneity, leading to metabolic plasticity and malignant progression.


Subject(s)
Breast Neoplasms/metabolism , Cell Plasticity/physiology , Glutathione Peroxidase/metabolism , Animals , Cell Line, Tumor , Female , Glutathione Peroxidase/genetics , Glutathione Peroxidase/physiology , Glycolysis , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Metabolism/physiology , Mice , Mice, Nude , Neovascularization, Pathologic/genetics , Oxidation-Reduction , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Vascular Endothelial Growth Factor A/metabolism , Xenograft Model Antitumor Assays
3.
Mol Metab ; 47: 101168, 2021 05.
Article in English | MEDLINE | ID: mdl-33465519

ABSTRACT

OBJECTIVE: Storage of triglycerides in lipid droplets is governed by a set of lipid droplet-associated proteins. One of these lipid droplet-associated proteins, hypoxia-inducible lipid droplet-associated (HILPDA), was found to impair lipid droplet breakdown in macrophages and cancer cells by inhibiting adipose triglyceride lipase. Here, we aimed to better characterize the role and mechanism of action of HILPDA in hepatocytes. METHODS: We performed studies in HILPDA-deficient and HILPDA-overexpressing liver cells, liver slices, and mice. The functional role and physical interactions of HILPDA were investigated using a variety of biochemical and microscopic techniques, including real-time fluorescence live-cell imaging and Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM). RESULTS: Levels of HILPDA were markedly induced by fatty acids in several hepatoma cell lines. Hepatocyte-specific deficiency of HILPDA in mice modestly but significantly reduced hepatic triglycerides in mice with non-alcoholic steatohepatitis. Similarly, deficiency of HILPDA in mouse liver slices and primary hepatocytes reduced lipid storage and accumulation of fluorescently-labeled fatty acids in lipid droplets, respectively, which was independent of adipose triglyceride lipase. Fluorescence microscopy showed that HILPDA partly colocalizes with lipid droplets and with the endoplasmic reticulum, is especially abundant in perinuclear areas, and mainly associates with newly added fatty acids. Real-time fluorescence live-cell imaging further revealed that HILPDA preferentially localizes to lipid droplets that are being remodeled. Overexpression of HILPDA in liver cells increased the activity of diacylglycerol acyltransferases (DGAT) and DGAT1 protein levels, concurrent with increased lipid storage. Confocal microscopy coupled to FRET-FLIM analysis demonstrated that HILPDA physically interacts with DGAT1 in living liver cells. The stimulatory effect of HILPDA on lipid storage via DGAT1 was corroborated in adipocytes. CONCLUSIONS: Our data indicate that HILPDA physically interacts with DGAT1 and increases DGAT activity. Our findings suggest a novel regulatory mechanism by which fatty acids promote triglyceride synthesis and storage.


Subject(s)
Diacylglycerol O-Acyltransferase/metabolism , Hepatocytes/metabolism , Hypoxia/metabolism , Lipid Droplets/metabolism , Adipocytes/metabolism , Animals , Carcinoma, Hepatocellular , Diacylglycerol O-Acyltransferase/genetics , Fatty Acids/metabolism , Gene Expression , Hep G2 Cells , Humans , Lipid Metabolism , Lipogenesis , Liver/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Neoplasm Proteins/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism
4.
Cell Metab ; 28(2): 268-281.e4, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29937374

ABSTRACT

The circadian clock coordinates behavioral and circadian cues with availability and utilization of nutrients. Proteasomal degradation of clock repressors, such as cryptochrome (CRY)1, maintains periodicity. Whether macroautophagy, a quality control pathway, degrades circadian proteins remains unknown. Here we show that circadian proteins BMAL1, CLOCK, REV-ERBα, and CRY1 are lysosomal targets, and that macroautophagy affects the circadian clock by selectively degrading CRY1. Autophagic degradation of CRY1, an inhibitor of gluconeogenesis, occurs in a diurnal window when rodents rely on gluconeogenesis, suggesting that CRY1 degradation is time-imprinted to maintenance of blood glucose. High-fat feeding accelerates autophagic CRY1 degradation and contributes to obesity-associated hyperglycemia. CRY1 contains several light chain 3 (LC3)-interacting region (LIR) motifs, which facilitate the interaction of cargo proteins with the autophagosome marker LC3. Using mutational analyses, we identified two distinct LIRs on CRY1 that exert circadian glycemic control by regulating CRY1 degradation, revealing LIRs as potential targets for controlling hyperglycemia.


Subject(s)
Autophagy , Circadian Clocks , Cryptochromes/metabolism , Glucose/metabolism , Hyperglycemia/metabolism , Liver/metabolism , ARNTL Transcription Factors/metabolism , Animals , CLOCK Proteins/metabolism , Circadian Rhythm , Diet, High-Fat/methods , Gluconeogenesis , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...