Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 104(15): 6299-304, 2007 Apr 10.
Article in English | MEDLINE | ID: mdl-17404222

ABSTRACT

Breast cancer risk is a polygenic trait. To identify breast cancer modifier alleles that have a high population frequency and low penetrance we used a comparative genomics approach. Quantitative trait loci (QTL) were initially identified by linkage analysis in a rat mammary carcinogenesis model followed by verification in congenic rats carrying the specific QTL allele under study. The Mcs5a locus was identified by fine-mapping Mcs5 in a congenic model. Here we characterize the Mcs5a locus, which when homozygous for the Wky allele, reduces mammary cancer risk by 50%. The Mcs5a locus is a compound QTL with at least two noncoding interacting elements: Mcs5a1 and Mcs5a2. The resistance phenotype is only observed in rats carrying at least one copy of the Wky allele of each element on the same chromosome. Mcs5a1 is located within the ubiquitin ligase Fbxo10, whereas Mcs5a2 includes the 5' portion of Frmpd1. Resistant congenic rats show a down-regulation of Fbxo10 in the thymus and an up-regulation of Frmpd1 in the spleen. The association of the Mcs5a1 and Mcs5a2 human orthologs with breast cancer was tested in two population-based breast cancer case-control studies (approximately 12,000 women). The minor alleles of rs6476643 (MCS5A1) and rs2182317 (MCS5A2) were independently associated with breast cancer risk. The minor allele of rs6476643 increases risk, whereas the rs2182317 minor allele decreases risk. Both alleles have a high population frequency and a low penetrance toward breast cancer risk.


Subject(s)
Breast Neoplasms/genetics , Chromosomes, Human, Pair 9/genetics , Genetic Predisposition to Disease , Quantitative Trait Loci , Animals , Base Sequence , Chromosome Mapping , Computational Biology , Crosses, Genetic , Female , Gene Frequency , Humans , Molecular Sequence Data , Polymorphism, Single Nucleotide , Rats , Rats, Inbred WF , Rats, Inbred WKY , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , United Kingdom , Untranslated Regions/genetics , Wisconsin
2.
Cancer Res ; 65(21): 9637-42, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16266982

ABSTRACT

To identify high-frequency, low-penetrance breast cancer modifier genes, we have developed a rat genetic model that uses the Wistar-Kyoto (WKy) inbred strain, resistant to developing 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis, as a congenic donor and the susceptible Wistar-Furth (WF) strain as the recipient. Here, data from congenic rat lines containing smaller WKy genomic intervals of the Mcs5 quantitative trait locus region are presented to fine map three independently acting Mcs5 subloci. WKy-homozygous females from congenic lines defining Mcs5a, Mcs5b, and Mcs5c averaged, respectively, 4.0 +/- 0.4, 11.6 +/- 0.6, and 3.5 +/- 0.4 mammary carcinomas per rat. These phenotypic values are statistically different from the WF-homozygous phenotype value of 8.0 +/- 0.4, which is the baseline phenotype used for these experiments. We identified a likely Mcs5a x Mcs5b epistatic interaction that results in masking the increased susceptibility effect of the Mcs5b WKy allele by the Mcs5a WKy allele. We also provide evidence for a Mcs5a x Mcs5c interaction that is synergistic to decrease mammary carcinoma susceptibility below the additive effects of WKy alleles at each locus independently. The Mcs5 subloci are currently localized to 1.0, 7.5, and 4.5 Mb of rat chromosome 5, and the orthologous regions are on human chromosome 9 and mouse chromosome 4. These loci will provide unbiased candidate gene loci for evaluation in human case-control association studies.


Subject(s)
Epistasis, Genetic , Mammary Neoplasms, Experimental/genetics , Quantitative Trait Loci , Alleles , Animals , Chromosome Mapping , Female , Genetic Predisposition to Disease , Mammary Neoplasms, Experimental/chemically induced , Rats , Rats, Inbred WF , Rats, Inbred WKY
SELECTION OF CITATIONS
SEARCH DETAIL
...