Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Host Microbe ; 29(9): 1342-1350.e5, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34358433

ABSTRACT

The pathogenesis of infectious diarrheal diseases is largely attributed to enterotoxins that cause dehydration by disrupting intestinal water absorption. We investigated patterns of genetic variation in mammalian guanylate cyclase-C (GC-C), an intestinal receptor targeted by bacterially encoded heat-stable enterotoxins (STa), to determine how host species adapt in response to diarrheal infections. Our phylogenetic and functional analysis of GC-C supports long-standing evolutionary conflict with diarrheal bacteria in primates and bats, with highly variable susceptibility to STa across species. In bats, we further show that GC-C diversification has sparked compensatory mutations in the endogenous uroguanylin ligand, suggesting an unusual scenario of pathogen-driven evolution of an entire signaling axis. Together, these findings suggest that conflicts with diarrheal pathogens have had far-reaching impacts on the evolution of mammalian gut physiology.


Subject(s)
Bacterial Toxins/metabolism , Cyclic GMP-Dependent Protein Kinase Type II/metabolism , Enterotoxins/metabolism , Guanylate Cyclase/metabolism , Natriuretic Peptides/metabolism , Animals , Chiroptera , Cyclic GMP/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Diarrhea/microbiology , Diarrhea/pathology , Enterocytes/metabolism , Enterotoxigenic Escherichia coli/metabolism , Enterotoxigenic Escherichia coli/pathogenicity , Guanylate Cyclase/genetics , Natriuretic Peptides/genetics , Protein Binding , Receptors, Enterotoxin/genetics , Receptors, Enterotoxin/metabolism , Signal Transduction , Sodium-Hydrogen Exchangers/metabolism , Vibrio cholerae/metabolism , Vibrio cholerae/pathogenicity
2.
Proc Natl Acad Sci U S A ; 114(38): E7939-E7948, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874570

ABSTRACT

Loquacious-PD (Loqs-PD) is required for biogenesis of many endogenous siRNAs in Drosophila In vitro, Loqs-PD enhances the rate of dsRNA cleavage by Dicer-2 and also enables processing of substrates normally refractory to cleavage. Using purified components, and Loqs-PD truncations, we provide a mechanistic basis for Loqs-PD functions. Our studies indicate that the 22 amino acids at the C terminus of Loqs-PD, including an FDF-like motif, directly interact with the Hel2 subdomain of Dicer-2's helicase domain. This interaction is RNA-independent, but we find that modulation of Dicer-2 cleavage also requires dsRNA binding by Loqs-PD. Furthermore, while the first dsRNA-binding motif of Loqs-PD is dispensable for enhancing cleavage of optimal substrates, it is essential for enhancing cleavage of suboptimal substrates. Finally, our studies define a previously unrecognized Dicer interaction interface and suggest that Loqs-PD is well positioned to recruit substrates into the helicase domain of Dicer-2.


Subject(s)
Drosophila Proteins/chemistry , RNA Helicases/chemistry , RNA, Double-Stranded/chemistry , RNA-Binding Proteins/chemistry , Ribonuclease III/chemistry , Amino Acid Motifs , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Protein Domains , RNA Helicases/genetics , RNA Helicases/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...