Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 127(46): 9684-9694, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37938891

ABSTRACT

We report computations of the vertical ionization potentials within the GW approximation of the near-complete series of first-row transition metal (V-Cu) aqua ions in their most common oxidation states, i.e., V3+, Cr3+, Cr2+, Mn2+, Fe3+, Fe2+, Co2+, Ni2+, and Cu2+. The d-orbital occupancy of these systems spans a broad range from d2 to d9. All of the structures were first optimized at the density functional theory level using a large cluster of explicit water molecules that are embedded in a continuum solvation model. Vertical ionization potentials were computed with the one-shot G0W0 approach on a range of transition metal ion clusters (6, 18, 40, and 60 explicit water molecules), wherein the convergence with respect to the basis set size was evaluated using the systems with 40 water molecules. We assess the results using three different density functional approximations as starting points for the vertical ionization potential calculations, namely, G0W0@PBE, G0W0@PBE0, and G0W0@r2SCAN. While the predicted ground-state structures are similar to all three exchange-correlation functionals, the vertical ionization potentials were in closer agreement with experiment when using the G0W0@PBE0 and G0W0@r2SCAN approaches, with the r2SCAN-based calculations being significantly less expensive. Computed bond distances and vertical ionization potentials for all structures are in good agreement with available experimental data.

2.
J Chem Theory Comput ; 19(20): 7077-7096, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37458314

ABSTRACT

This paper summarizes developments in the NWChem computational chemistry suite since the last major release (NWChem 7.0.0). Specifically, we focus on functionality, along with input blocks, that is accessible in the current stable release (NWChem 7.2.0) and in the "master" development branch, interfaces to quantum computing simulators, interfaces to external libraries, the NWChem github repository, and containerization of NWChem executable images. Some ongoing developments that will be available in the near future are also discussed.

3.
Proc Natl Acad Sci U S A ; 120(32): e2307323120, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37523554

ABSTRACT

The complex and heterogeneous nature of the lignin macromolecule has presented a lasting barrier to its utilization. To achieve high lignin yield, the technical lignin extraction process usually severely modifies and condenses the native structure of lignin, which is a critical drawback for its utilization in conversion processes. In addition, there is no method capable of separating lignin from plant biomass with controlled structural properties. Here, we developed an N-heterocycle-based deep eutectic solvent formed between lactic acid and pyrazole (La-Py DES) with a binary hydrogen bonding functionality resulting in a high affinity toward lignin. Up to 93.7% of lignin was extracted from wheat straw biomass at varying conditions from 90 °C to 145 °C. Through careful selection of treatment conditions as well as lactic acid to pyrazole ratios, lignin with controlled levels of ether linkage content, hydroxyl group content, and average molecular weight can be generated. Under mild extraction conditions (90 °C to 120 °C), light-colored native-like lignin can be produced with up to 80% yield, whereas ether linkage-free lignin with low polydispersity can be obtained at 145 °C. Overall, this study offers a new strategy for native lignin extraction and generating lignin with controlled structural properties.

4.
Phys Chem Chem Phys ; 25(6): 4824-4838, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36692338

ABSTRACT

We have established CCSD(T)/CBS (Complete Basis Set) limits for 3 stationary points on the benzene dimer potential energy surface, corresponding to the π⋯π (parallel displaced or PD(C2h), minimum) and CH⋯π (T-shaped or T(C2v), transition state) and tilted T-shaped (or TT(Cs), minimum) bonding scenarios considering both the structure and binding energy. The CCSD(T)/CBS binding energies are -2.65 ± 0.02 (PD), -2.74 ± 0.03 (T), and -2.83 ± 0.01 kcal mol-1 (TT). To this end, the CH⋯π is ∼0.2 kcal mol-1 stronger than the π⋯π interaction, whereas the tilting of the CH donating benzene molecule with respect to the other benzene is worth 0.1 kcal mol-1. As previously discussed in the literature, the MP2 level of theory does not provide a close match for either the energy or structure, yet the SCS-MP2 yields structures in excellent agreement with respect to the CCSD(T) result. It is found that the SCS-MI-MP2 also gives optimized structures very close to SCS-MP2 (within ∼0.01 Å of the benchmark). Despite the closer match in structure, the spin-biased MP2 methods (SCS-, SCS-MI-, and SOS-MP2) incorrectly predict the relative stabilities of the isomers. That said, none of the spin biased MP2 methods offers a good compromise between energy and structure for the systems examined. Finally, the CCSD(T)/CBS benchmarks were used to assess the performance of 13 DFT functionals selected from different rungs of Jacob's ladder. Several functionals such as TPSS-D3, B3LYP-D3, B97-D, B97-D3, and B2PLYP-D3 provided a good description of the binding energies for both CH⋯π and π⋯π interactions, yielding values within 6% of the CCSD(T)/CBS benchmark values. Unlike the MP2 methods, these functionals correctly predict the relative stability of the PD(C2h) and T(C2v) dimers. Further, we find that there is no systematic improvement as Jacob's ladder is ascended (increased complexity of functional). The best functionals that result in a good compromise between structure and energy accuracy are B97-D3 and B2PLYP-D3 for both the CH⋯π and π⋯π interaction. Despite the impressive performance of these functionals, a challenge that remains is ensuring the transferability of these density functionals in accurately describing the interaction between dimers of larger aromatic molecules, the latter requiring high-level benchmarks for these systems.

5.
Phys Chem Chem Phys ; 24(36): 21759-21772, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36097953

ABSTRACT

The highly reactive gaseous ion [B12Br11]- is a metal-free closed-shell anion which spontaneously forms covalent bonds with hydrocarbon molecules, including alkanes. Herein, we systematically investigate the reaction mechanism for binding of [B12Br11]- to the five hexane isomers yielding [B12Br11(C6H14)]-, as well as to cyclohexane and several hexene isomers (yielding [B12Br11(C6H12)]-) using collision-induced dissociation (CID), infrared photodissociation spectroscopy (IRPD) and computational methods. CID of the different [B12Br11(C6H14)]- ions results in distinct fragmentation patterns dependent on the structure of the hexane isomer. The observed fragmentation reactions provide insights into the addition mechanism of [B12Br11]- to hexane. Based on the observed CID patterns, we identified that either B-C bond formation through heterolytic C-C or C-H bond cleavages or B-H bond formation through heterolytic C-H cleavage occur dependent on the structure of the hexane isomer. Meanwhile, we observe identical CID spectra of adducts originating from isomers of C6H12. Spectroscopic investigations of adducts of 1-hexene and cyclohexane indicate the same product structure with an open C6 chain. Computational investigations evidenced that low lying transition states are present, which enable a ring opening reaction of cyclohexane when binding to [B12Br11]-.

6.
Chem Commun (Camb) ; 58(65): 9060-9063, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35899861

ABSTRACT

The exceptional photochromic and redox properties of polyoxometalate anions, PW12O403-, have been exploited to develop an integrated photoelectrochemical energy storage cell for conversion and storage of solar energy. Elimination of strongly coordinating cations using benchtop ion soft landing leads to a ∼370% increase in the maximum power output of the device. Additionally, the photocathode displayed a pronounced color change from clear to blue upon irradiation, which warrants the potential application of the IPES cell in advanced smart windows and photochromic lenses.

7.
J Chem Theory Comput ; 18(8): 4919-4926, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35816679

ABSTRACT

The GW approximation has been recently gaining popularity among the methods for simulating molecular core-level X-ray photoemission spectra. Traditionally, Gaussian-type orbital GW core-level binding energies have been computed using either the cc-pVnZ or def2-nZVP basis set families, extrapolating the obtained results to the complete basis set limit, followed by an element-specific relativistic correction. Despite achieving rather good accuracy, it has been previously stated that these binding energies are chronically underestimated. In the present work, we show that those previous studies obtained results that were not well-converged with respect to the basis set size and that, once basis set convergence is achieved, there seems to be no such underestimation. Standard techniques known to offer a good cost-accuracy ratio in other theories demonstrate that the cc-pVnZ and def2-nZVP families exhibit contraction errors and might lead to unreliable complete basis set extrapolations for absolute binding energies, often deviating about 200-500 meV from the putative basis set limit found in this work. On the other hand, uncontracted versions of these basis sets offer vastly improved convergence. Even faster convergence can be obtained using core-rich property-optimized basis set families like pcSseg-n, pcJ-n, and ccX-nZ. Finally, we also show that the improvement observed for core properties using these specialized basis sets does not degrade their description of valence excitations: vertical ionization potentials and electron affinities computed with these basis sets converge as fast as the ones obtained with the aug-cc-pVnZ family, thus offering a balanced description of both core and valence regions.

8.
J Phys Chem Lett ; 12(50): 12005-12011, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34890205

ABSTRACT

We report the observation of a small, yet remarkably stable, metal-free hexacyanodiborate dianion [B2(CN)6]2- in the gas phase. Negative ion photoelectron spectroscopy (NIPES) was employed to measure its spectra at multiple laser wavelengths, yielding a 1.9 eV electron binding energy (EBE) ─a remarkably high value of electronic stability and a ∼2.60 eV repulsive Coulomb barrier (RCB) for electron detachment. This rationalizes the observation of this dianion, although homolytic charge-separation dissociation into two [B(CN)3]•- is energetically favorable. Quantum chemical calculations demonstrate a D3d staggered conformation for both the dianion and radical monoanion, and the calculated EBE and RCB match the experimental values well. The simulated density of states spectrum reproduces all measured electronic transitions, while the simulated vibrational progressions for the ground state transition cover a much narrower EBE range compared to the experimental band, indicating appreciable auto-photodetachment via electronically excited dianion resonances.

9.
J Chem Theory Comput ; 17(12): 7504-7517, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34855381

ABSTRACT

We present a scalable implementation of the GW approximation using Gaussian atomic orbitals to study the valence and core ionization spectroscopies of molecules. The implementation of the standard spectral decomposition approach to the screened-Coulomb interaction, as well as a contour-deformation method, is described. We have implemented both of these approaches using the robust variational fitting approximation to the four-center electron repulsion integrals. We have utilized the MINRES solver with the contour-deformation approach to reduce the computational scaling by 1 order of magnitude. A complex heuristic in the quasiparticle equation solver further allows a speed-up of the computation of core and semicore ionization energies. Benchmark tests using the GW100 and CORE65 data sets and the carbon 1s binding energy of the well-studied ethyl trifluoroacetate, or ESCA molecule, were performed to validate the accuracy of our implementation. We also demonstrate and discuss the parallel performance and computational scaling of our implementation using a range of water clusters of increasing size.

10.
J Phys Chem Lett ; 12(31): 7574-7582, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34347487

ABSTRACT

We present benchmark binding energies of naturally occurring gas molecules CH4, CO2, and H2S in the small cage, namely, the pentagonal dodecahedron (512) (H2O)20, which is one of the constituent cages of the 3 major lattices (structures I, II, and H) of clathrate hydrates. These weak interactions require higher levels of electron correlation and converge slowly with an increasing basis set to the complete basis set (CBS) limit, necessitating the use of large basis sets up to the aug-cc-pV5Z and subsequent correction for basis set superposition error (BSSE). For the host hollow (H2O)20 cages, we have identified a most stable isomer with binding energy of -200.8 ± 2.1 kcal/mol at the CCSD(T)/CBS limit (-199.2 ± 0.5 kcal/mol at the MP2/CBS limit). Additionally, we report converged second order Møller-Plesset (MP2) CBS binding energies for the encapsulation of guests in the (H2O)20 cage of -4.3 ± 0.1 for CH4@(H2O)20, -6.6 ± 0.1 for CO2@(H2O)20, and -8.5 ± 0.1 kcal/mol for H2S@(H2O)20, respectively. For CH4@(H2O)20, exhibiting the weakest encapsulation affinity among the three, we report CCSD(T)/aug-cc-pVTZ binding energies and, based on them, a CCSD(T)/CBS estimate of -4.75 ± 0.1 kcal/mol. To the best of our knowledge, the CCSD(T)/aug-cc-pVTZ calculation for CH4@(H2O)20 is the largest one reported to date (168 valence electrons, 1978 basis functions, and the correlation of 84 doubly occupied and 1873 virtual orbitals) and required a scalable implementation of the (T) module on 6144 nodes (350 208 cores) of the "Cori" supercomputer at the National Energy Research Supercomputing Center (NERSC) for a total execution time of 195 min (for the (T) part). These efficient scalable implementations of highly correlated methods offer the capability to obtain long-lasting benchmarks of intermolecular interactions in complex systems. They also provide a path toward parametrizing classical potentials needed to study the dynamical and transport properties in these complex systems as well as assess the accuracy of lower scaling electronic structure methods such as density functional theory (DFT) and MP2 including its spin-biased variants.

11.
Proc Natl Acad Sci U S A ; 117(38): 23374-23379, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32878996

ABSTRACT

Alkanes and [B12X12]2- (X = Cl, Br) are both stable compounds which are difficult to functionalize. Here we demonstrate the formation of a boron-carbon bond between these substances in a two-step process. Fragmentation of [B12X12]2- in the gas phase generates highly reactive [B12X11]- ions which spontaneously react with alkanes. The reaction mechanism was investigated using tandem mass spectrometry and gas-phase vibrational spectroscopy combined with electronic structure calculations. [B12X11]- reacts by an electrophilic substitution of a proton in an alkane resulting in a B-C bond formation. The product is a dianionic [B12X11CnH2n+1]2- species, to which H+ is electrostatically bound. High-flux ion soft landing was performed to codeposit [B12X11]- and complex organic molecules (phthalates) in thin layers on surfaces. Molecular structure analysis of the product films revealed that C-H functionalization by [B12X11]- occurred in the presence of other more reactive functional groups. This observation demonstrates the utility of highly reactive fragment ions for selective bond formation processes and may pave the way for the use of gas-phase ion chemistry for the generation of complex molecular structures in the condensed phase.

12.
Phys Chem Chem Phys ; 22(31): 17713-17724, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32728676

ABSTRACT

Electronic structure, collision-induced dissociation (CID) and bond properties of closo-[B6X6]2- (X = Cl-I) are investigated in direct comparison with their closo-[B12X12]2- analogues. Photoelectron spectroscopy (PES) and theoretical investigations reveal that [B6X6]2- dianions are electronically significantly less stable than the corresponding [B12X12]2- species. Although [B6Cl6]2- is slightly electronically unstable, [B6Br6]2- and [B6I6]2- are intrinsically stable dianions. Consistent with the trend in the electron detachment energy, loss of an electron (e- loss) is observed in CID of [B6X6]2- (X = Cl, Br) but not for [B6I6]2-. Halogenide loss (X- loss) is common for [B6X6]2- (X = Br, I) and [B12X12]2- (X = Cl, Br, I). Meanwhile, X˙ loss is only observed for [B12X12]2- (X = Br, I) species. The calculated reaction enthalpies of the three competing dissociation pathways (e-, X- and X˙ loss) indicated a strong influence of kinetic factors on the observed fragmentation patterns. The repulsive Coulomb barrier (RCB) determines the transition state for the e- and X- losses. A significantly lower RCB for X- loss than for e- loss was found in both experimental and theoretical investigations and can be rationalized by the recently introduced concept of electrophilic anions. The positive reaction enthalpies for X- losses are significantly lower for [B6X6]2- than for [B12X12]2-, while enthalpies for X˙ losses are higher. These observations are consistent with a difference in bond character of the B-X bonds in [B6X6]2- and [B12X12]2-. A complementary bonding analysis using QTAIM, NPA and ELI-D based methods suggests that B-X bonds in [B12X12]2- have a stronger covalent character than in [B6X6]2-, in which X has a stronger halide character.

13.
Appl Spectrosc ; 74(11): 1350-1357, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32285679

ABSTRACT

We describe a simplified approach to simulating Raman spectra from ab initio molecular dynamics (AIMD) calculations. The protocol relies on on-the-fly calculations of approximate molecular polarizabilities using the well-known sum over orbitals (as opposed to states) method. This approach bypasses the more accurate but computationally expensive approach to calculating molecular polarizabilities along AIMD trajectories, i.e., solving the coupled perturbed Hartree-Fock/Kohn-Sham equations. We demonstrate the advantages and limitations of our method through a few case studies targeting molecular systems of interest to surface- and/or tip-enhanced Raman spectroscopy practitioners.

14.
Phys Chem Chem Phys ; 22(14): 7460-7473, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32219243

ABSTRACT

The reduction of carbon dioxide to oxalate has been studied by experimental Collisionally Induced Dissociation (CID) and vibrational characterization of the alkali metal oxalates, supplemented by theoretical electronic structure calculations. The critical step in the reductive process is the coordination of CO2 to an alkali metal anion, forming a metal carbonite MCO2- able to subsequently receive a second CO2 molecule. While the energetic demand for these reactions is generally low, we find that the degree of activation of CO2 in terms of charge transfer and transition state energies is the highest for lithium and systematically decreases down the group (M = Li-Cs). This is correlated to the strength of the binding interaction between the alkali metal and CO2, which can be related to the structure of the oxalate moiety within the product metal complexes evolving from a planar to a staggered conformer with increasing atomic number of the interacting metal. Similar structural changes are observed for crystalline alkali metal oxalates, although the C2O42- moiety is in general more planar in these, a fact that is attributed to the increased number of interacting alkali metal cations compared to the gas-phase ions.

15.
Chem Commun (Camb) ; 56(33): 4591-4594, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32207481

ABSTRACT

Noble gas (Ng) containing molecular anions are much scarcer than Ng containing cations. No neon containing anion has been reported so far. Here, the experimental observation of the molecular anion [B12(CN)11Ne]- and a theoretical analysis of the boron-neon bond is reported.

16.
J Chem Phys ; 151(19): 194310, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31757138

ABSTRACT

Photoelectron spectroscopy and theoretical investigations have been performed to systematically probe the intrinsic electronic properties of [Mo6X14]2- (X = halogen). All three PE spectra of gaseous [Mo6X14]2- (X = Cl, Br, I) dianions, which were generated by electrospray ionization, exhibit multiple resolved peaks in the recorded binding energy range. Theoretical investigations on the orbital structure and charge distribution were performed to support interpretation of the observed spectra and were further extended onto [Mo6F14]2-, a dianion that was not available for the experimental study. The measured adiabatic (ADE) and vertical detachment energies (VDE) for X = Cl-I were well reproduced by density functional theory calculations (accuracy ∼0.1 eV). Corresponding ADE/VDE values for the dianions were found to be 1.48/2.13 (calc.) and 2.30/2.65, 2.30/2.62, and 2.20/2.42 eV (all expt.) for X = F, Cl, Br, and I, respectively, showing an interesting buckled trend of electron binding energy (EBE) along the halogen series, i.e., EBE (F) ≪ EBE (Cl) ∼ EBE (Br) > EBE (I). Molecular orbital analyses indicate different mixing of metal and halogen atomic orbitals, which is strongly dependent on the nature of X, and suggest that the most loosely bound electrons are detached mainly from the metal core for X = F and Cl, but from halide ligands for X = Br and I. The repulsive Coulomb barrier (RCB), estimated from the photon energy dependent spectra, decreases with increasing halogen size, from 1.8 eV for X = Cl to 1.6 eV for X = I. Electrostatic potential modeling confirms the experimental RCB values and predicts that the most favorable electron detaching pathway should lie via the face-bridging halide ligands.

17.
J Phys Chem A ; 123(32): 7142-7147, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31334653

ABSTRACT

Molecular reorientation dynamics modulate the physical and chemical properties of molecules at interfaces. This is particularly the case for organic molecules interacting with metallic surfaces-structural motifs of current interest to ultrasensitive chemical/biological detection/imaging. In this context, surface-enhanced Raman scattering (SERS) can be used to gauge the orientation of molecules in the immediate vicinity of plasmonic metals. Herein, we analyze SERS spectra of two aromatic thiols (4-mercaptobenzonitrile and thiophenol) chemisorbed onto silver substrates using ab initio molecular dynamics-based Raman spectral simulations that account for the optical response of molecules in the bulk and oriented molecules at the surface. Through a comparison with prior works aimed at gauging the orientation of our two model systems on metallic substrates, we describe the advantages and discuss the limitations of our described models and approach to gauging the orientation of molecules on metals through time domain simulations of their SERS signatures.

18.
J Chem Phys ; 150(16): 164306, 2019 Apr 28.
Article in English | MEDLINE | ID: mdl-31042907

ABSTRACT

We report a joint benchmark study on the electronic stability of closo-dodecaborate [B12H12]2- employing negative ion photoelectron spectroscopy and high level electronic structure methods. The photoelectron spectra of [B12H12]2-, measured at 266, 193, and 157 nm, yield the Adiabatic and Vertical Detachment Energies (ADE and VDE) of this dianion at 0.93 ± 0.05 eV and 1.15 ± 0.05 eV, respectively, along with a ∼3 eV Repulsive Coulomb Barrier (RCB) against electron detachment. Theoretical calculations at various levels of electronic structure theory confirm the high stability of this dianion. The ADE and VDE values calculated at the coupled cluster with single, double and a perturbative estimate of triple excitations/aug-cc-PVQZ level are 0.92 and 1.16 eV, in excellent agreement with the experimental benchmark values. The comparison between the experimental and the theoretical values obtained at different levels of theory indicate that the PBE0 density functional represents a cost-effective method of sufficient accuracy to describe the molecular properties of this dianion and associated compounds. The theoretical RCB was modeled after the electrostatic potential (ESP) and point charge method (PCM) along three different detachment pathways, viz., along the B-H bond, perpendicular to a B-B bond, and normal to a B-B-B triangle. It was found that detachment of the electron along the B-H bond is preferred, as this pathway is associated with RCBs between 2.3 eV (PCM) and 3.3 eV (ESP), values that bracket the experimental estimate of ∼3 eV.

19.
Proc Natl Acad Sci U S A ; 116(17): 8167-8172, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30952786

ABSTRACT

Chemically binding to argon (Ar) at room temperature has remained the privilege of the most reactive electrophiles, all of which are cationic (or even dicationic) in nature. Herein, we report a concept for the rational design of anionic superelectrophiles that are composed of a strong electrophilic center firmly embedded in a negatively charged framework of exceptional stability. To validate our concept, we synthesized the percyano-dodecoborate [B12(CN)12]2-, the electronically most stable dianion ever investigated experimentally. It serves as a precursor for the generation of the monoanion [B12(CN)11]-, which indeed spontaneously binds Ar at 298 K. Our mass spectrometric and spectroscopic studies are accompanied by high-level computational investigations including a bonding analysis of the exceptional B-Ar bond. The detection and characterization of this highly reactive, structurally stable anionic superelectrophile starts another chapter in the metal-free activation of particularly inert compounds and elements.

20.
Phys Chem Chem Phys ; 21(11): 5903-5915, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30515490

ABSTRACT

closo-Borate anions [closo-BnXn]2- are part of the most famous textbook examples of polyhedral compounds. Substantial differences in their reactivity and interactions with other compounds depending on the substituent X and cluster size n have been recognized, which favor specific closo-borates for different applications in cancer treatment, chemical synthesis, and materials science. Surprisingly, a fundamental understanding of the molecular properties underlying these differences is lacking. Here, we report our study comparing the electronic structure and reactivity of closo-borate anions [closo-BnXn]2- (X = Cl, Br, I, n = 10, 11, 12 in all combinations) in the gas phase and in solution. We investigated the free dianions and the ion pairs [nBu4N]+[closo-BnXn]2- by gas phase anion photoelectron spectroscopy accompanied by theoretical investigations. Strong similarities in electronic structures for n = 10 and 11 were observed, while n = 12 clusters were different. A systematic picture of the development in electronic stability along the dimension X is derived. Collision induced dissociation shows that fragmentation of the free dianions is mainly dependent on the substituent X and gives access to a large variety of boron-rich molecular ions. Fragmentation of the ion pair depends strongly on n. The results reflect the high chemical stability of clusters with n = 10 and 12, while those with n = 11 are much more prone to dissociation. We bridge our study to the condensed phase by performing comparative electrochemistry and reactivity studies on closo-borates in solution. The trends found at the molecular level are also reflected in the condensed-phase properties. We discuss how the gas phase values allow evaluation of the influence of the condensed phase on the electronic stability of closo-borates. A synthetic method via an oxidation/chlorination reaction yielding [closo-B10Cl10]2- from highly chlorinated {closo-B11} clusters is introduced, which underlines the intrinsically high reactivity of the {closo-B11} cage.

SELECTION OF CITATIONS
SEARCH DETAIL
...