Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1906-1909, 2022 07.
Article in English | MEDLINE | ID: mdl-36086575

ABSTRACT

Continuous monitoring of blood pressure (BP) can help individuals manage their chronic diseases such as hypertension, requiring non-invasive measurement methods in free-living conditions. Recent approaches fuse Photoplethys-mograph (PPG) and electrocardiographic (ECG) signals using different machine and deep learning approaches to non-invasively estimate BP; however, they fail to reconstruct the complete signal, leading to less accurate models. In this paper, we propose a cycle generative adversarial network (CycleGAN) based approach to extract a BP signal known as ambulatory blood pressure (ABP) from a clean PPG signal. Our approach uses a cycle generative adversarial network that extends the GAN architecture for domain translation, and outperforms state-of-the-art approaches by up to 2× in BP estimation.


Subject(s)
Hypertension , Photoplethysmography , Blood Pressure , Blood Pressure Determination , Blood Pressure Monitoring, Ambulatory , Humans , Hypertension/diagnosis , Photoplethysmography/methods
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 744-747, 2021 11.
Article in English | MEDLINE | ID: mdl-34891398

ABSTRACT

Respiratory rate (RR) is a clinical sign representing ventilation. An abnormal change in RR is often the first sign of health deterioration as the body attempts to maintain oxygen delivery to its tissues. There has been a growing interest in remotely monitoring of RR in everyday settings which has made photoplethysmography (PPG) monitoring wearable devices an attractive choice. PPG signals are useful sources for RR extraction due to the presence of respiration-induced modulations in them. The existing PPG-based RR estimation methods mainly rely on hand-crafted rules and manual parameters tuning. An end-to-end deep learning approach was recently proposed, however, despite its automatic nature, the performance of this method is not ideal using the real world data. In this paper, we present an end-to-end and accurate pipeline for RR estimation using Cycle Generative Adversarial Networks (CycleGAN) to reconstruct respiratory signals from raw PPG signals. Our results demonstrate a higher RR estimation accuracy of up to 2× (mean absolute error of 1.9±0.3 using five fold cross validation) compared to the state-of-th-art using a identical publicly available dataset. Our results suggest that CycleGAN can be a valuable method for RR estimation from raw PPG signals.


Subject(s)
Photoplethysmography , Wearable Electronic Devices , Algorithms , Respiration , Respiratory Rate
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1164-1167, 2021 11.
Article in English | MEDLINE | ID: mdl-34891494

ABSTRACT

Pain, as a multivalent, dynamic and ambiguous phenomenon is difficult to objectively quantify, in particular, in real clinical settings due to several uncontrollable factors. Respiratory rate is one of the bio-signals whose fluctuations strongly correlates with pain, however, it has been often neglected due to its monitoring difficulties. In this paper, to the best of our knowledge for the first time, we propose an objective pain assessment method using respiratory rate derived from wristband-recorded Photoplethysmography (PPG) signals collected from real post-operative patients (in contrast to the existing studies analyzing stimulated pain). We first derive respiratory rate from post-operative patients' PPG signals using an Empirical Mode Decomposition (EMD) based method and extract several statistical features from it. We then implement a feature selection method to identify the top most significant features, and exploit a weak supervision method to address the unbalanced nature of the collected labels in real settings. Several machine learning algorithms are applied to perform binary classification of no pain (NP) vs. three distinct pain levels (PL1 through PL3). We obtain prediction accuracy of up to 81.41% (NP vs. PL1), 80.36% (NP vs. PL2) and 79.48% (NP vs. PL3) which outperform the results reported by the state-of-the-art, despite obtained from data collected from real post-operative patients.


Subject(s)
Photoplethysmography , Respiratory Rate , Heart Rate , Humans , Pain Measurement , Wrist
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2140-2143, 2021 11.
Article in English | MEDLINE | ID: mdl-34891712

ABSTRACT

The world has been affected by COVID-19 coronavirus. At the time of this study, the number of infected people in the United States is the highest globally (31.2 million infections). Within the infected population, patients diagnosed with acute respiratory distress syndrome (ARDS) are in more life-threatening circumstances, resulting in severe respiratory system failure. Various studies have investigated the infections to COVID-19 and ARDS by monitoring laboratory metrics and symptoms. Unfortunately, these methods are merely limited to clinical settings, and symptom-based methods are shown to be ineffective. In contrast, vital signs (e.g., heart rate) have been utilized to early-detect different respiratory diseases in ubiquitous health monitoring. We posit that such biomarkers are informative in identifying ARDS patients infected with COVID-19. In this study, we investigate the behavior of COVID-19 on ARDS patients by utilizing simple vital signs. We analyze the long-term daily logs of blood pressure (BP) and heart rate (HR) associated with 150 ARDS patients admitted to five University of California academic health centers (containing 77,972 samples for each vital sign) to distinguish subjects with COVID-19 positive and negative test results. In addition to the statistical analysis, we develop a deep neural network model to extract features from the longitudinal data. Our deep learning model is able to achieve 0.81 area under the curve (AUC) to classify the vital signs of ARDS patients infected with COVID-19 versus other ARDS diagnosed patients. Since our proposed model uses only the BP and HR, it would be possible to review data prior to the first reported cases in the U.S. to validate the presence or absence of COVID-19 in our communities prior to January 2020. In addition, by utilizing wearable devices, and monitoring vital signs of subjects in everyday settings it is possible to early-detect COVID-19 without visiting a hospital or a care site.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Blood Pressure , Heart Rate , Humans , Respiratory Distress Syndrome/diagnosis , SARS-CoV-2
5.
JMIR Mhealth Uhealth ; 9(5): e25258, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33949957

ABSTRACT

BACKGROUND: Accurate, objective pain assessment is required in the health care domain and clinical settings for appropriate pain management. Automated, objective pain detection from physiological data in patients provides valuable information to hospital staff and caregivers to better manage pain, particularly for patients who are unable to self-report. Galvanic skin response (GSR) is one of the physiologic signals that refers to the changes in sweat gland activity, which can identify features of emotional states and anxiety induced by varying pain levels. This study used different statistical features extracted from GSR data collected from postoperative patients to detect their pain intensity. To the best of our knowledge, this is the first work building pain models using postoperative adult patients instead of healthy subjects. OBJECTIVE: The goal of this study was to present an automatic pain assessment tool using GSR signals to predict different pain intensities in noncommunicative, postoperative patients. METHODS: The study was designed to collect biomedical data from postoperative patients reporting moderate to high pain levels. We recruited 25 participants aged 23-89 years. First, a transcutaneous electrical nerve stimulation (TENS) unit was employed to obtain patients' baseline data. In the second part, the Empatica E4 wristband was worn by patients while they were performing low-intensity activities. Patient self-report based on the numeric rating scale (NRS) was used to record pain intensities that were correlated with objectively measured data. The labels were down-sampled from 11 pain levels to 5 different pain intensities, including the baseline. We used 2 different machine learning algorithms to construct the models. The mean decrease impurity method was used to find the top important features for pain prediction and improve the accuracy. We compared our results with a previously published research study to estimate the true performance of our models. RESULTS: Four different binary classification models were constructed using each machine learning algorithm to classify the baseline and other pain intensities (Baseline [BL] vs Pain Level [PL] 1, BL vs PL2, BL vs PL3, and BL vs PL4). Our models achieved higher accuracy for the first 3 pain models than the BioVid paper approach despite the challenges in analyzing real patient data. For BL vs PL1, BL vs PL2, and BL vs PL4, the highest prediction accuracies were achieved when using a random forest classifier (86.0, 70.0, and 61.5, respectively). For BL vs PL3, we achieved an accuracy of 72.1 using a k-nearest-neighbor classifier. CONCLUSIONS: We are the first to propose and validate a pain assessment tool to predict different pain levels in real postoperative adult patients using GSR signals. We also exploited feature selection algorithms to find the top important features related to different pain intensities. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/17783.


Subject(s)
Galvanic Skin Response , Machine Learning , Adult , Aged , Aged, 80 and over , Algorithms , Humans , Middle Aged , Pain , Pain Measurement , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL