Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(3): 1875-1887, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38192325

ABSTRACT

In this contribution, a comprehensive study of nanostructured Bi2Te3 (BT) thermoelectric material was performed using a combination of synchrotron radiation-based techniques such as XAFS, and XRF, along with some other laboratory techniques such as XRD, XPS, FESEM, and HRTEM. This study aims to track the change in morphological, compositional, average and local/electronic structures of Bi2Te3 of two different phases; nanostructure (thin film) and nanopowders (NPs). Bi2Te3 nanomaterial was fabricated as pellets using zone melting process in a one step process, while Bi2Te3 thin film was deposited on sodalime glass substrate using a vacuum thermal evaporation technique. Synchrotron radiation-based Bi LIII-edge fluorescence-mode X-ray absorption fine structure (XAFS) technique was performed to probe locally the electronic and fine structures of BT thin film around the Bi atom, while transmission-mode XAFS was used for BT NPs distributed in the PVP matrix. The structural features of the collected Bi LIII XANES spectra of thin film and powder samples of BT are compared with the simulated XANES spectrum of BT calculated using FDMNES code at 5 Å cluster size. Combining different off-line structural characterization techniques (XRD, FESEM, XPS, and HRTEM), along with those of synchrotron radiation-based techniques (XAFS and XRF) is necessary for complementary and supported average crystal, chemical, morphological and local electronic structural analyses for unveiling the variation between Bi2Te3 in the nanostructure/thin film and nanopowder morphology, and then connecting between the structural features and functions of BT in two different morphologies. After that, we measured the Seebeck coefficient and the power factor values for both the BT nanopowder and thin film.

2.
Small ; 20(13): e2307236, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37974471

ABSTRACT

Bimetallic metal-organic frameworks (MOFs) are promising nanomaterials whose reactivity towards biomolecules remains challenging due to issues related to synthesis, stability, control over metal oxidation state, phase purity, and atomic level characterization. Here, these shortcomings are rationally addressed through development of a synthesis of mixed metal Zr/Ce-MOFs in aqueous environment, overcoming significant hurdles in the development of MOF nanozymes, sufficiently stable on biologically relevant conditions. Specifically, a green and safe synthesis of Zr/Ce-MOF-808 is reported in water/acetic acid mixture which affords remarkably water-stable materials with reliable nanozymatic reactivity, including MOFs with a high Ce content previously reported to be unstable in water. The new materials outperform analogous bimetallic MOF nanozymes, showcasing that rational synthesis modifications could impart outstanding improvements. Further, atomic-level characterization by X-ray Absorption Fine Structure (XAFS) and X-ray Diffraction (XRD) confirmed superior nanozymes arise from differences in the synthetic method, which results in aqueous stable materials, and Ce incorporation, which perturbs the ligand exchange dynamics of the material, and could ultimately be used to fine tune the intrinsic MOF reactivity. Similar rational strategies which leverage metals in a synergistic manner should enable other water-stable bimetallic MOF nanozymes able to surpass existing ones, laying the path for varied biotechnological applications.


Subject(s)
Metal-Organic Frameworks , Nanostructures , Acetic Acid , Biotechnology , Water
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123230, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37586277

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and devastating primary brain tumor among adults. It is highly lethal disease, as only 25% of patients survive longer than 1 year and only 5% more than 5 years from the diagnosis. To search for the new, more effective methods of treatment, the understanding of mechanisms underlying the process of tumorigenesis is needed. The new light on this problem may be shed by the analysis of biochemical anomalies of tissues affected by tumor growth. Therefore, in the present work, we applied the Fourier transform infrared (FTIR) and Raman microspectroscopy to evaluate changes in the distribution and structure of biomolecules appearing in the rat brain as a result of glioblastoma development. In turn, synchrotron X-ray fluorescence microscopy was utilized to determine the elemental anomalies appearing in the nervous tissue. To achieve the assumed goals of the study animal models of GBM were used. The rats were subjected to the intracranial implantation of glioma cells with different degree of invasiveness. For spectroscopic investigation brain slices taken from the area of cancer cells administration were used. The obtained results revealed, among others, the decrease content of lipids and compounds containing carbonyl groups, compositional and structural changes of proteins as well as abnormalities in the distribution of low atomic number elements within the region of tumor.


Subject(s)
Glioblastoma , Rats , Animals , Glioblastoma/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Proteins , Brain/pathology , Models, Animal
4.
Small ; 19(46): e2304585, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37469201

ABSTRACT

High-entropy oxides (HEOs) have emerged as promising anode materials for next-generation lithium-ion batteries (LIBs). Among them, spinel HEOs with vacant lattice sites allowing for lithium insertion and diffusion seem particularly attractive. In this work, electrospun oxygen-deficient (Mn,Fe,Co,Ni,Zn) HEO nanofibers are produced under environmentally friendly calcination conditions and evaluated as anode active material in LIBs. A thorough investigation of the material properties and Li+ storage mechanism is carried out by several analytical techniques, including ex situ synchrotron X-ray absorption spectroscopy. The lithiation process is elucidated in terms of lithium insertion, cation migration, and metal-forming conversion reaction. The process is not fully reversible and the reduction of cations to the metallic form is not complete. In particular, iron, cobalt, and nickel, initially present mainly as Fe3+ , Co3+ /Co2+ , and Ni2+ , undergo reduction to Fe0 , Co0 , and Ni0 to different extent (Fe < Co < Ni). Manganese undergoes partial reduction to Mn3+ /Mn2+ and, upon re-oxidation, does not revert to the pristine oxidation state (+4). Zn2+ cations do not electrochemically participate in the conversion reaction, but migrating from tetrahedral to octahedral positions, they facilitate Li-ion transport within lattice channels opened by their migration. Partially reversible crystal phase transitions are observed.

5.
ACS Appl Mater Interfaces ; 15(23): 28747-28762, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37264972

ABSTRACT

A γ-alumina support functionalized with transition metals is one of the most widely used industrial catalysts for the total oxidation of volatile organic compounds (VOCs) as air pollutants at higher temperatures (280-450 °C). By rational design of a bimetal CuFe-γ-alumina catalyst, synthesized from a dawsonite alumina precursor, the activity in total oxidation of toluene as a model VOC at a lower temperature (200-380 °C) is achieved. A fundamental understanding of the catalyst and the reaction mechanism is elucidated by advanced microscopic and spectroscopic characterizations as well as by temperature-programmed surface techniques. The nature of the metal-support bonding and the optimal abundance between Cu-O-Al and Fe-O-Al species in the catalysts leads to synergistic catalytic activity promoted by small amounts of iron (Fe/Al = 0.005). The change in the metal oxide-cluster alumina interface is related to the nature of the surfaces to which the Cu atoms attach. In the most active catalyst, the CuO6 octahedra are attached to 4 Al atoms, while in the less active catalyst, they are attached to only 3 Al atoms. The oxidation of toluene occurs via the Langmuir-Hinshelwood mechanism. The presented material introduces a prospective family of low-cost and scalable oxidation catalysts with superior efficiency at lower temperatures.

6.
Nutrients ; 15(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37299589

ABSTRACT

We aimed to evaluate the magnesium content in human cirrhotic liver and its correlation with serum AST levels, expression of hepatocellular injury, and MELDNa prognostic score. In liver biopsies obtained at liver transplantation, we measured the magnesium content in liver tissue in 27 cirrhotic patients (CIRs) and 16 deceased donors with healthy liver (CTRLs) by atomic absorption spectrometry and within hepatocytes of 15 CIRs using synchrotron-based X-ray fluorescence microscopy. In 31 CIRs and 10 CTRLs, we evaluated the immunohistochemical expression in hepatocytes of the transient receptor potential melastatin 7 (TRPM7), a magnesium influx chanzyme also involved in inflammation. CIRs showed a lower hepatic magnesium content (117.2 (IQR 110.5-132.9) vs. 162.8 (IQR 155.9-169.8) µg/g; p < 0.001) and a higher percentage of TRPM7 positive hepatocytes (53.0 (IQR 36.8-62.0) vs. 20.7 (10.7-32.8)%; p < 0.001) than CTRLs. In CIRs, MELDNa and serum AST at transplant correlated: (a) inversely with the magnesium content both in liver tissue and hepatocytes; and (b) directly with the percentage of hepatocytes stained intensely for TRPM7. The latter also directly correlated with the worsening of MELDNa at transplant compared to waitlisting. Magnesium depletion and overexpression of its influx chanzyme TRPM7 in hepatocytes are associated with severity of hepatocyte injury and prognosis in cirrhosis. These data represent the pathophysiological basis for a possible beneficial effect of magnesium supplementation in cirrhotic patients.


Subject(s)
Magnesium , TRPM Cation Channels , Humans , Magnesium/metabolism , Hepatocytes/metabolism , Prognosis , Liver Cirrhosis/pathology , Protein Serine-Threonine Kinases/metabolism
7.
ChemSusChem ; 16(12): e202300201, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-36852937

ABSTRACT

Manganese hexacyanoferrates (MnHCF) are promising positive electrode materials for non-aqueous batteries, including Na-ion batteries, due to their large specific capacity (>130 mAh g-1 ), high discharge potential and sustainability. Typically, the electrochemical reaction of MnHCF associates with phase and structural changes, due to the Jahn-Teller (JT) distortion of Mn sites upon the charge process. To understand the effect of the MnHCF structure on its electrochemical performance, two MnHCF materials with different vacancies content are investigated herein. The electrochemical results show that the sample with lower vacancy content (4 %) exhibits relatively higher capacity retention of 99.1 % and 92.6 % at 2nd and 10th cycles, respectively, with respect to 97.4 % and 79.3 % in sample with higher vacancy content (11 %). Ex-situ X-ray absorption spectroscopy (XAS) and ex situ X-ray diffraction (XRD) characterization results show that a weaker cooperative JT-distortion effect and relatively smaller crystal structure modification occurred for the material with lower vacancies, which explains the better electrochemical performance in cycled electrodes.


Subject(s)
Ferrocyanides , Manganese , Electrodes , Ions
8.
Sci Total Environ ; 870: 161931, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36736402

ABSTRACT

Juncus acutus has been proposed as a suitable species for the design of phytoremediation plans. This research aimed to investigate the role played by rhizosphere minerals and water composition on Zn transformations and dynamics in the rhizosphere-plant system of J. acutus exposed to different Zn sources. Rhizobox experiments were conducted using three different growing substrates (Zn from 137 to 20,400 mg/kg), and two irrigation lines (Zn 0.05 and 180 mg/l). The plant growth was affected by the substrate type, whereas the Zn content in the water did not significantly influence the plant height for a specific substrate. J. acutus accumulated Zn mainly in roots (up to 10,000 mg/kg dw); the metal supply by the water led to variable increases in the total Zn concentration in the vegetal organs, and different Zn distributions both controlled by the rhizosphere mineral composition. Different Zn complexation mechanisms were observed, mainly driven by cysteine and citrate compounds, whose amount increased linearly with Zn content in water, but differently for each of the investigated systems. Our study contributes to gain a more complete picture of the Zn pathway in the rhizosphere-plant system of J. acutus. We demonstrated that this vegetal species is not only capable of developing site-specific tolerance mechanisms, but it is also capable to differently modulate Zn transformation when Zn is additionally supplied by watering. These findings are necessary for predicting the fate of Zn during phytoremediation of sites characterized by specific mineralogical properties and subject to water chemical variations.


Subject(s)
Metals , Soil Pollutants , Metals/analysis , Plants/metabolism , Biodegradation, Environmental , Minerals/analysis , Zinc/analysis , Water/analysis , Plant Roots/metabolism , Soil Pollutants/analysis , Rhizosphere
9.
J Exp Bot ; 74(3): 1107-1122, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36453904

ABSTRACT

Metabolism of metals in microalgae and adaptation to metal excess are of significant environmental importance. We report a three-step mechanism that the green microalga Chlorella sorokiniana activates during the acquisition of and adaptation to manganese (Mn), which is both an essential trace metal and a pollutant of waters. In the early stage, Mn2+ was mainly bound to membrane phospholipids and phosphates in released mucilage. The outer cell wall was reorganized and lipids were accumulated, with a relative increase in lipid saturation. Intracellular redox settings were rapidly altered in the presence of Mn excess, with increased production of reactive oxygen species that resulted in lipid peroxidation and a decrease in the concentration of thiols. In the later stage, Mn2+ was chelated by polyphosphates and accumulated in the cells. The structure of the inner cell wall was modified and the redox milieu established a new balance. Polyphosphates serve as a transient Mn2+ storage ligand, as proposed previously. In the final stage, Mn was stored in multivalent Mn clusters that resemble the structure of the tetramanganese-calcium core of the oxygen-evolving complex. The present findings elucidate the bioinorganic chemistry and metabolism of Mn in microalgae, and may shed new light on water-splitting Mn clusters.


Subject(s)
Chlorella , Microalgae , Manganese/metabolism , Chlorella/metabolism , Microalgae/metabolism , Metals/metabolism
10.
Small Methods ; 6(12): e2200913, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36333102

ABSTRACT

Copper sulfide has attracted increasing attention as conversion-type cathode material for, especially, solid-state lithium-based batteries. However, the reaction mechanism behind its extraordinary electroactivity is not well understood, and the various explanations given by the scientific community are diverging. Herein, the CuS reaction dynamics are highlighted by examining the occurring redox processes via a cutting-edge methodology combining X-ray absorption fine structure spectroscopy, and chemometrics to overcome X-ray diffraction limitations posed by the poor material's crystallinity. The mathematical approach rules out the formation of intermediates and clarifies the direct conversion of CuS to Cu in a two-electron process during discharge and reversible oxidation upon delithiation. Two distinct voltage regions are identified corresponding to Cu- as well as the S-redox mechanisms occurring in the material.

11.
Anal Bioanal Chem ; 414(20): 6213-6222, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35759022

ABSTRACT

Biotransformation of toxic selenium ions to non-toxic species has been mainly focused on biofortification of microorganisms and production of selenium nanoparticles (SeNPs), while far less attention is paid to the mechanisms of transformation. In this study, we applied a combination of analytical techniques with the aim of characterizing the SeNPs themselves as well as monitoring the course of selenium transformation in the mycelium of the fungus Phycomyces blakesleeanus. Red coloration and pungent odor that appeared after only a few hours of incubation with 10 mM Se+4 indicate the formation of SeNPs and volatile methylated selenium compounds. SEM-EDS confirmed pure selenium NPs with an average diameter of 57 nm, which indicates potentially very good medical, optical, and photoelectric characteristics. XANES of mycelium revealed concentration-dependent mechanisms of reduction, where 0.5 mM Se+4 led to the predominant formation of Se-S-containing organic molecules, while 10 mM Se+4 induced production of biomethylated selenide (Se-2) in the form of volatile dimethylselenide (DMSe) and selenium nanoparticles (SeNPs), with the SeNPs/DMSe ratio rising with incubation time. Several structural forms of elemental selenium, predominantly monoclinic Se8 chains, together with trigonal Se polymer chain, Se8 and Se6 ring structures, were detected by Raman spectroscopy.


Subject(s)
Nanoparticles , Phycomyces , Selenium , Biotransformation , Mycelium , Nanoparticles/chemistry , Phycomyces/metabolism , Selenium/chemistry
12.
J Synchrotron Radiat ; 29(Pt 3): 765-774, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35511009

ABSTRACT

Synchrotron radiation-based techniques [X-ray absorption near-edge structure (XANES) and X-ray fluorescence (XRF)] combined with inductively coupled plasma-mass spectrometry (ICP-MS) were used for the assessment of heavy metals concentrations as well as lead (Pb) and nickel (Ni) speciation in airborne particulate matter (PM10) over two residential sites in Greater Cairo. Nineteen 24 h high-volume samples collected at Giza (G) Square and Helwan (H) University (Egypt) were selected for this study. Mean concentrations of heavy metals in PM10 at both sites were found to have the same descending order of Pb > Cu > Ni > Cd > Co > As, of which concentrations of Pb, Cu, Ni and Cd in H samples were higher than those in G samples. For Pb, synchrotron-based XRF results were in good agreement with concentrations obtained by ICP-MS. The XANES spectra of PM10 at the Pb L2-edge and Ni K-edge were compared with those of Pb and Ni in model standard compounds to provide information on the potential oxidation states as well as the chemical forms of those elements. The data show that Pb has similar chemical environments in both series G and H with the predominance of Pb2+ oxidation state. Nickel was found as Ni(OH)2, NiO and Ni metal in the analyzed samples. However, the content of Ni in the background filter shows a very strong interference with that of the collected PM10. Carcinogenic and non-carcinogenic risks resulting from the inhalation of the studied heavy metals were assessed for children and adult residents and were found below the safe limits, at both sites.


Subject(s)
Metals, Heavy , Particulate Matter , Adult , Cadmium/analysis , Child , Environmental Monitoring , Humans , Lead/analysis , Metals, Heavy/analysis , Nickel/analysis , Particulate Matter/analysis , Risk Assessment , Synchrotrons
13.
J Synchrotron Radiat ; 28(Pt 6): 1811-1819, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34738934

ABSTRACT

X-ray absorption fine-structure (XAFS) spectroscopy can assess the chemical speciation of the elements providing their coordination and oxidation state, information generally hidden to other techniques. In the case of trace elements, achieving a good quality XAFS signal poses several challenges, as it requires high photon flux, counting statistics and detector linearity. Here, a new multi-element X-ray fluorescence detector is presented, specifically designed to probe the chemical speciation of trace 3d elements down to the p.p.m. range. The potentialities of the detector are presented through a case study: the speciation of ultra-diluted elements (Fe, Mn and Cr) in geological rocks from a calcareous formation related to the dispersal processes from Ontong (Java) volcanism (mid-Cretaceous). Trace-elements speciation is crucial in evaluating the impact of geogenic and anthropogenic harmful metals on the environment, and to evaluate the risks to human health and ecosystems. These results show that the new detector is suitable for collecting spectra of 3d elements in trace amounts in a calcareous matrix. The data quality is high enough that quantitative data analysis could be performed to determine their chemical speciation.


Subject(s)
Trace Elements , Ecosystem , Exercise Test , Humans , Metals , Trace Elements/analysis , X-Ray Absorption Spectroscopy
14.
Environ Sci Technol ; 55(15): 10769-10783, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34308629

ABSTRACT

A thorough understanding of the implications of chronic low-dose exposure to engineered nanomaterials through the food chain is lacking. The present study aimed to characterize such a response in Cucurbita pepo L. (zucchini) upon exposure to a potential nanoscale fertilizer: copper oxide (CuO) nanoparticles. Zucchini was grown in soil amended with nano-CuO, bulk CuO (100 mg Kg-1), and CuSO4 (320 mg Kg-1) from germination to flowering (60 days). Nano-CuO treatment had no impact on plant morphology or growth nor pollen formation and viability. The uptake of Cu was comparable in the plant tissues under all treatments. RNA-seq analyses on vegetative and reproductive tissues highlighted common and nanoscale-specific components of the response. Mitochondrial and chloroplast functions were uniquely modulated in response to nanomaterial exposure as compared with conventional bulk and salt forms. X-ray absorption spectroscopy showed that the Cu local structure changed upon nano-CuO internalization, suggesting potential nanoparticle biotransformation within the plant tissues. These findings demonstrate the potential positive physiological, cellular, and molecular response related to nano-CuO application as a plant fertilizer, highlighting the differential mechanisms involved in the exposure to Cu in nanoscale, bulk, or salt forms. Nano-CuO uniquely stimulates plant response in a way that can minimize agrochemical inputs to the environment and therefore could be an important strategy in nanoenabled agriculture.


Subject(s)
Metal Nanoparticles , Nanoparticles , Nanostructures , Copper/toxicity , Metal Nanoparticles/toxicity , Oxides , Plant Roots , Soil
15.
Heliyon ; 7(4): e06769, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33937543

ABSTRACT

Solid friable residues (i.e. Ash) from combusted oil shale are a major environmental issue because they are highly enriched with toxic elements following combustion. The synchrotron based techniques X-ray Absorption Fine Structure (XAFS) were used for determining the changes in speciation of Chromium (Cr) and Vanadium (V) in the ash and its mixtures with Red soil and Phosphogypsum as additives, through one-year period of hydration process. The X-ray Absorption Near Edge Structure (XANES) qualitative results indicate that all mixtures exhibits similar patterns showing that Vanadium has remain as pentavalent state, on the contrary Chromium has dramatic decreased from hexavalent to trivalent. This change in Cr speciation became clearer with increasing hydration period. Therefore, the results confirmed the advantage of the hydration process in the Cr(VI) reduction which might be due the domination of carbonate phase within all mixtures, thus hydration caused carbonate dissolution that increase the pH toward more alkaline which caused the Cr(IV) reduction into less-harmful and less mobile Cr(III). This increase in pH was not in favor of changing the V(V) into V(IV) due to its large stability field V(V). The Extend X-ray Absorption Fine Structure (EXAFS) analysis showed that Cr exhibiting a coordination shell of C-atoms as first nearest neighbors backscattering atoms around Cr, and at C-atoms backscattering at medium range order. This confirmed the domination of carbonate media through the best fitting of Cr-C. Which might be attributed to the more alkaline conditions developed during saturation of water (hydration), that accelerates of the reduction of Cr(VI) into Cr(III). This means simply that hydration of the ash can reduce the presence of harmful Cr(VI) in these ash tailings.

16.
Sci Rep ; 11(1): 7231, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33790332

ABSTRACT

A multi-instrumental approach combining highly sensitive Synchrotron Radiation-based techniques was used to provide information on the real composition of a dry black ink powder found in a bronze inkwell of the first century AD. The presence of Pb, Cu and Fe in the powder, revealed by XRF and ICP-OES data, leads to raise several hypotheses on their origin. The inkpot and its lid were also investigated by Hand-Held XRF, revealing a bronze alloy (Cu-Sn) with a certain amount of Fe and Pb. The lid was found to be particularly enriched in lead. XRPD, XAS and FTIR measurements showed a substantial presence of silicates and common clay minerals in the ink along with cerussite and malachite, Pb and Cu bearing-carbonates, respectively. These evidences support the hypothesis of an important contamination of the ink sample by the burial environment (soil) and the presence of degradation products of the bronze inkpot. The combined use of IR, Raman, and GC-MS evidenced that the black ink is mainly composed of amorphous carbon deriving from the combustion of organic material mixed with a natural binding agent, Arabic gum.

17.
Angew Chem Int Ed Engl ; 59(50): 22763-22770, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-32750196

ABSTRACT

Ru/Al2 O3 is a highly stable, but less active catalyst for methanation reactions. Herein we report an effective approach to significantly improve its performance in the methanation of CO2 /H2 mixtures. Highly active and stable Ru/γ-Al2 O3 catalysts were prepared by high-temperature treatment in the reductive reaction gas. Operando/in situ spectroscopy and STEM imaging reveals that the strongly improved activity, by factors of 5 and 14 for CO and CO2 methanation, is accompanied by a flattening of the Ru nanoparticles and the formation of highly basic hydroxylated alumina sites. We propose a modification of the metal-support interactions (MSIs) as the origin of the increased activity, caused by modification of the Al2 O3 surface in the reductive atmosphere and an increased thermal mobility of the Ru nanoparticles, allowing their transfer to modified surface sites.

18.
Environ Sci Technol ; 54(8): 5093-5101, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32182047

ABSTRACT

The role and distribution of iron (Fe) species in physical soil fractions have received remarkably little attention in field-scale systems. Here, we identify and quantify the Fe phases into two fractions (fine sand, FSa, and fine silt and clay, FSi + Cl), isolated from an agricultural soil unamended and amended with different organic materials, by Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The linear combination fitting and wavelet transform of EXAFS data revealed noticeable differences between unamended FSa and FSi + Cl fractions. Specifically, the FSi + Cl fraction was mainly characterized by ferrihydrite (48%) and Fe(III)-soil organic matter (SOM) complexes (37%), whereas in the FSa fraction, ferrihydrite still represented a major phase (44%), with a lower contribution from Fe(III)-SOM (18%). In the FSa fraction, the addition of the organic amendments resulted in an increase of Fe-SOM complexes (31-35%) and a decrease of ferrihydrite (28-29%). By contrast, in the amended FSi + Cl fractions, the added organic matter led to negligible changes in percent ferrihydrite. Therefore, regardless of the amendment type, the addition of organic matter to soil increased the capability of the coarse fraction (FSa) to stabilize organic carbon, thus pointing out that the role of FSa in carbon sequestration in agricultural soils at a global scale may be overlooked.


Subject(s)
Fertilizers , Soil , Charcoal , Ferric Compounds , Iron
19.
ChemSusChem ; 13(3): 608-615, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31756022

ABSTRACT

Manganese hexacyanoferrate (MnHCF) is made of earth-abundant elements by a safe and easy synthesis. The material features a higher specific capacity at a higher potential than other Prussian blue analogs. However, the effect of hydration is critical to determine the electrochemical performance as both the electrochemical behavior and the reaction dynamics are affected by interstitial/structural water and adsorbed water. In this study, the electrochemical activity of MnHCF is investigated by varying the interstitial ion content through a joint operando X-ray absorption spectroscopy and chemometric approach, with the intent to assess the structural and electronic modifications that occur during Na release and Li insertion, as well as the overall dynamic evolution of the system. In MnHCF, both the Fe and Mn centers are electrochemically active and undergo reversible oxidation during the interstitial ion extraction (Fe2+ /Fe3+ and Mn2+ /Mn3+ ). The adsorption of water results in irreversible capacity during charge but only on the Fe site, which is suggested by our chemometric analysis. The local environment of Mn experiences a substantial yet reversible Jahn-Teller effect upon interstitial ion removal because of the formation of trivalent Mn, which is associated with a decrease of the equatorial Mn-N bond lengths by 10 %.

20.
Environ Sci Pollut Res Int ; 25(36): 36645-36660, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30377963

ABSTRACT

Zinc incorporation into marine bivalve shells belonging to different genera (Donax, Glycymeris, Lentidium, and Chamelea) grown in mine-polluted seabed sediments (Zn up to 1% w/w) was investigated using x-ray diffraction (XRD), chemical analysis, soft x-ray microscopy combined with low-energy x-ray fluorescence (XRF) mapping, x-ray absorption spectroscopy (XAS), and transmission electron microscopy (TEM). These bivalves grew their shells, producing aragonite as the main biomineral and they were able to incorporate up to 2.0-80 mg/kg of Zn, 5.4-60 mg/kg of Fe and 0.5-4.5 mg/kg of Mn. X-ray absorption near edge structure (XANES) analysis revealed that for all the investigated genera, Zn occurred as independent Zn mineral phases, i.e., it was not incorporated or adsorbed into the aragonitic lattice. Overall, our results indicated that Zn coordination environment depends on the amount of incorporated Zn. Zn phosphate was the most abundant species in Donax and Lentidium genera, whereas, Chamelea shells, characterized by the highest Zn concentrations, showed the prevalence of Zn-cysteine species (up to 56% of total speciation). Other Zn coordination species found in the investigated samples were Zn hydrate carbonate (hydrozincite) and Zn phosphate. On the basis of the coordination environments, it was deduced that bivalves have developed different biogeochemical mechanisms to regulate Zn content and its chemical speciation and that cysteine plays an important role as an active part of detoxification mechanism. This work represents a step forward for understanding bivalve biomineralization and its significance for environmental monitoring and paleoreconstruction.


Subject(s)
Animal Shells/chemistry , Bivalvia/chemistry , Environmental Monitoring/methods , Geologic Sediments/chemistry , Mining , Water Pollutants, Chemical/analysis , Zinc/analysis , Animals , Italy , Phosphates/analysis , Zinc Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...