Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 11(9)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35563990

ABSTRACT

Requeson cheese is obtained from whey proteins. The production of this cheese is the most economical way to recover and concentrate whey proteins, which is why it is frequently made in some Latin American countries. Four requeson cheese treatments were prepared with different concentrations and combinations of salts (sodium chloride and/or potassium chloride) and were conventionally or vacuum packed. Proteolysis, peptide concentration, angiotensin-converting enzyme (ACE) inhibitory and antioxidant (DPPH and ABTS) activities were evaluated over time (one, seven and fourteen days). Requeson cheese presented antioxidant and ACE inhibitory activities, however, these values vary depending on salt addition, type of packaging and time of storage. The highest values of antioxidant activity (ABTS) were found in cheese added with 1.5% NaCl and 1.5% (NaCl/KCl, 1:1). Cheese without added salt and vacuum packed presented the highest ACE inhibition percentage at day seven. Therefore, it can be concluded that requeson cheese elaborated exclusively of sweet whey, presents antioxidant and ACE inhibition activity. However, for a cheese with ACE inhibitory capacity, it is recommended not to add salts or add at 1% (NaCl) and vacuum pack it. Additionally, for a cheese with antioxidant activity, it is recommended to add salt at 1.5% either NaCl or (1:1) NaCl/KCl and pack it either in a polyethylene bag or vacuum. In conclusion, requeson cheese elaborate with 100% sweet whey is a dairy product with antioxidant and ACE inhibition activity, being low in salt and fat.

2.
Front Vet Sci ; 9: 817270, 2022.
Article in English | MEDLINE | ID: mdl-35187146

ABSTRACT

Nitroethane is a potent methane-inhibitor for ruminants but little is known regarding simultaneous effects of repeated administration on pre- and post-gastric methane-producing activity and potential absorption and systemic accumulation of nitroethane in ruminants. Intraruminal administration of 120 mg nitroethane/kg body weight per day to Holstein cows (n = 2) over a 4-day period transiently reduced (P < 0.05) methane-producing activity of rumen fluid as much as 3.6-fold while concomitantly increasing (P < 0.05) methane-producing activity of feces by as much as 8.8-fold when compared to pre-treatment measurements. These observations suggest a bacteriostatic effect of nitroethane on ruminal methanogen populations resulting in increased passage of viable methanogens to the lower bovine gut. Ruminal VFA concentrations were also transiently affected by nitroethane administration (P < 0.05) reflecting adaptive changes in the rumen microbial populations. Mean (± SD) nitroethane concentrations in plasma of feedlot steers (n = 6/treatment) administered 80 or 160 mg nitroethane/kg body weight per day over a 7-day period were 0.12 ± 0.1 and 0.41 ± 0.1 µmol/mL 8 h after the initial administration indicating rapid absorption of nitroethane, with concentrations peaking 1 day after initiation of the 80 or 160 mg nitroethane/kg body weight per day treatments (0.38 ± 0.1 and 1.14 ± 0.1 µmol/mL, respectively). Plasma nitroethane concentrations declined thereafter to 0.25 ± 0.1 and 0.78 ± 0.3 and to 0.18 ± 0.1 and 0.44 ± 0.3 µmol/mL on days 2 and 7 for the 80 or 160 mg nitroethane/kg body weight per day treatment groups, respectively, indicating decreased absorption due to increased ruminal nitroethane degradation or to more rapid excretion of the compound.

3.
Trop Anim Health Prod ; 53(4): 436, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34401959

ABSTRACT

Ruminal methanogenesis is considered an inefficient process as it can result in the loss of 4 to 12% of the total energy consumed by the ruminant. Recent studies have shown that compounds such as nitroethane, 2-nitroethanol, 2-nitro-1-propanol, and 3-nitro-1-propionic acid are capable of inhibiting methane production during in vitro studies. However, all of these nitrocompounds came from a synthetic origin, which could limit their use. In contrast, some plants of the Astragallus genus produce a natural nitrocompound, although its anti-methanogenic effect has not been evaluated. To determine the anti-methanogenic effect, in vitro cultures of freshly collected mixed populations of ruminal microbes were supplemented with A. mollissimus extracts (MISER). Cultures supplemented with 2-nitroethanol, ethyl 2-nitroacetate, or nitroethane were used as positive controls whereas distilled water was added to the untreated control tubes. After a 24 h incubation period, the methane production was reduced by more than 98% for the samples treated with A. mollissimus extract (P < 0.05) compared to the untreated controls (10.2 ± 0.1 mmol mL-1 incubated liquid). Cultures supplemented with MISER produced a greater (P < 0.05) amount of total VFA, compared to the rest of treated and untreated cultures. Considering that there are significant differences between MISER treatment, positive controls and untreated cultures (P < 0.05) regarding the amounts of total gas, gas composition (CH4 and H2), and the amount of VFA produced, it is concluded that Astragallus mollissimus poses an alternative strategy to reduce ruminal methanogenesis. To further explore such alternative, it is necessary to determine if the metabolization byproducts are safe and/or useful for the animal.


Subject(s)
Methane , Plant Extracts , Animals , Dietary Supplements , Fermentation , Methane/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Rumen/metabolism , Ruminants
4.
BMC Biotechnol ; 21(1): 26, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33757473

ABSTRACT

BACKGROUND: The production of agricultural wastes still growing as a consequence of the population growing. However, the majority of these residues are under-utilized due their chemical composition, which is mainly composed by cellulose. Actually, the search of cellulases with high efficiency to degrade this carbohydrate remains as the challenge. In the present experiment, two genes encoding an endoglucanase (EC 3.2.1.4) and ß-glucosidase (EC 3.2.1.21) were overexpressed in Escherichia coli and their recombinant enzymes (egl-FZYE and cel-FZYE, respectively) characterized. Those genes were found in Trabulsiella odontermitis which was isolated from the gut of termite Heterotermes sp. Additionally, the capability to release sugars from agricultural wastes was evaluated in both enzymes, alone and in combination. RESULTS: The results have shown that optimal pH was 6.0 and 6.5, reaching an activity of 1051.65 ± 47.78 and 607.80 ± 10.19 U/mg at 39 °C, for egl-FZYE and cel-FZYE, respectively. The Km and Vmax for egl-FZYE using CMC as substrate were 11.25 mg/mL and 3921.57 U/mg, respectively, whereas using Avicel were 15.39 mg/mL and 2314.81 U/mg, respectively. The Km and Vmax for cel-FZYE using Avicel as substrate were 11.49 mg/mL and 2105.26 U/mg, respectively, whereas using CMC the enzyme did not had activity. Both enzymes had effect on agricultural wastes, and their effect was improved when they were combined reaching an activity of 955.1 ± 116.1, 4016.8 ± 332 and 1124.2 ± 241 U/mg on corn stover, sorghum stover and pine sawdust, respectively. CONCLUSIONS: Both enzymes were capable of degrading agricultural wastes, and their effectiveness was improved up to 60% of glucose released when combined. In summary, the results of the study demonstrate that the recombinant enzymes exhibit characteristics that indicate their value as potential feed additives and that the enzymes could be used to enhance the degradation of cellulose in the poor-quality forage generally used in ruminant feedstuffs.


Subject(s)
Cellulases/chemistry , Enterobacteriaceae/enzymology , Refuse Disposal/methods , Waste Products/analysis , Agriculture , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Cellulases/genetics , Cellulases/metabolism , Cellulose/metabolism , Crops, Agricultural/metabolism , Crops, Agricultural/microbiology , Enterobacteriaceae/chemistry , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Enzyme Stability , Isoptera/microbiology , Kinetics
5.
J Anim Sci ; 97(3): 1317-1324, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30649418

ABSTRACT

Methanogenesis is a metabolic process that allows the rumen ecosystem the ability to maintain the low hydrogen partial pressures needed for proper digestive function. However, rumen methanogenesis is considered to be an inefficient process because it can result in the loss of 4% to 12% of the total energy consumed by the host. Recent studies have shown that some short-chain nitrocompounds such as nitroethane, 2-nitroethanol, 2-nitro-1-propanol, and 3-nitro-1-propionic acid (3NPA) are capable of inhibiting the production of methane during in vitro culture; nevertheless, optimal supplementation doses have yet to be determined. In the present study, in vitro cultures of freshly collected mixed populations of ruminal microbes were supplemented with the naturally occurring nitrocompound, 3NPA, to achieve 0, 3, 6, 9, or 12 mM. Analysis of fermentation products after 24 h of incubation revealed that methane (CH4) production was reduced in a dose-dependent manner by 29% to 96% (P < 0.05) compared with the amount produced by untreated controls (15.03 ± 0.88 µmol mL-1 incubated liquid). Main effects of the supplement were also observed, which resulted in a reduction (P < 0.05) on amounts of total gas and volatile fatty acids (VFA) produced, as well as in an increase of 0.07 to 0.30 µmol mL-1 on rates of 3NPA degradation. Changes in production of metabolites as CH4, hydrogen (H2), VFA, and NH3 indicated that the fermentation efficiency was not compromised dramatically by 3NPA treatment in moderate doses of 6 and 9 mM. Results further revealed that the metabolism of the 3NPA by microbial populations is also dose-dependent. The microbes were able to metabolize more than 75% of the added nitrocompound, with the greatest degradation rates in cultures treated with 9-mM 3NPA. Finally, from a practical standpoint, and considering the magnitude of CH4 reduction, effect on VFA, and percentage of metabolized supplement, the most efficacious dose for 3NPA administration may be between 3 and 9 mM.


Subject(s)
Dietary Supplements , Methane/metabolism , Nitro Compounds/pharmacology , Propionates/pharmacology , Animals , Fatty Acids, Volatile/metabolism , Fermentation/drug effects , Hydrogen/metabolism , Rumen/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...