Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Purinergic Signal ; 16(1): 41-59, 2020 03.
Article in English | MEDLINE | ID: mdl-32078115

ABSTRACT

In infants, the main cause of blindness is retinopathy of prematurity that stems in a hypoxic-ischemic condition. Caffeine is a psychoactive compound that at low to moderate concentrations, selectively inhibits adenosine A1 and A2A receptors. Caffeine exerts beneficial effects in central nervous system of adult animal models and humans, whereas it seems to have malefic effect on the developing tissue. We observed that 48-h exposure (during synaptogenesis) to a moderate dose of caffeine (30 mg/kg of egg) activated pro-survival signaling pathways, including ERK, CREB, and Akt phosphorylation, alongside BDNF production, and reduced retinal cell death promoted by oxygen glucose deprivation in the chick retina. Blockade of TrkB receptors and inhibition of CREB prevented caffeine protection effect. Similar signaling pathways were described in previously reported data concerning chemical preconditioning mechanism triggered by NMDA receptors activation, with low concentrations of agonist. In agreement to these data, caffeine increased NMDA receptor activity. Caffeine decreased the levels of the chloride co-transporter KCC2 and delayed the developmental shift on GABAA receptor response from depolarizing to hyperpolarizing. These results suggest that the caffeine-induced delaying in depolarizing effect of GABA could be facilitating NMDA receptor activity. DPCPX, an A1 adenosine receptor antagonist, but not A2A receptor inhibitor, mimicked the effect of caffeine, suggesting that the effect of caffeine occurs through A1 receptor blockade. In summary, an in vivo caffeine exposure could increase the resistance of the retina to ischemia-induced cell death, by triggering survival pathways involving CREB phosphorylation and BDNF production/TrkB activation.


Subject(s)
Caffeine/pharmacology , Cell Death/drug effects , Neuroprotective Agents/pharmacology , Retina/drug effects , Signal Transduction/drug effects , Animals , Cell Hypoxia/drug effects , Chick Embryo , Chickens , Ischemia/metabolism
2.
Exp Eye Res ; 154: 116-125, 2017 01.
Article in English | MEDLINE | ID: mdl-27876485

ABSTRACT

Retinal ischemia is a pathological event present in several retinopathies such as diabetic retinopathy and glaucoma, leading to partial or full blindness with no effective treatment available. Since synthetic and endogenous cannabinoids have been studied as modulators of ischemic events in the central nervous system (CNS), the present study aimed to investigate the involvement of cannabinoid system in the cell death induced by ischemia in an avascular (chick) retina. We observed that chick retinal treatment with a combination of WIN 55212-2 and cannabinoid receptor antagonists (either AM251/O-2050 or AM630) decreased the release of lactate dehydrogenase (LDH) induced by retinal ischemia in an oxygen and glucose deprivation (OGD) model. Further, the increased availability of endocannabinoids together with cannabinoid receptor antagonists also had a neuroprotective effect. Surprisingly, retinal exposure to any of these drugs alone did not prevent the release of LDH stimulated by OGD. Since cannabinoids may also activate transient receptor potential (TRP) channels, we investigated the involvement of TRPA1 receptors (TRPA1) in retinal cell death induced by ischemic events. We demonstrated the presence of TRPA1 in the chick retina, and observed an increase in TRPA1 content after OGD, both by western blot and immunohistochemistry. In addition, the selective activation of TRPA1 by mustard oil (MO) did not worsen retinal LDH release induced by OGD, whereas the blockage of TRPA1 completely prevented the extravasation of cellular LDH in ischemic condition. Hence, these results show that during the ischemic event there is an augment of TRPA1, and activation of this receptor is important in cell death induction. The data also indicate that metabotropic cannabinoid receptors, both type 1 and 2, are not involved with the cell death found in the early stages of ischemia. Therefore, the study points to a potential role of TRPA1 as a target for neuroprotective approaches in retinal ischemia.


Subject(s)
Calcium Channels/metabolism , Ischemia/metabolism , Nerve Tissue Proteins/metabolism , Neuroprotection/physiology , Receptors, Cannabinoid/metabolism , Retina/metabolism , Retinal Diseases/metabolism , Transient Receptor Potential Channels/metabolism , Animals , Animals, Newborn , Blotting, Western , Cell Count , Cell Death , Chickens , Disease Models, Animal , Immunohistochemistry , Ischemia/pathology , Oxygen/metabolism , Retina/pathology , Retinal Diseases/pathology , TRPA1 Cation Channel
SELECTION OF CITATIONS
SEARCH DETAIL