Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
J Lasers Med Sci ; 9(4): 223-227, 2018.
Article in English | MEDLINE | ID: mdl-31119014

ABSTRACT

The capacity of the liver to regenerate is an important clinical issue after major hepatectomies and makes the difference between life and death in some cases of post-operative malfunction when the liver remnant is too small or has an impaired regenerative capacity. Several approaches have been tested to stimulate hepatic regeneration after post-operative hepatic failure syndrome; however, they have produced controversial results. A quick, simple, and harmless method that can be used intraoperatively and capable of promoting an increased regenerative capacity of the remaining liver would be very welcome. Thus, based on the data in the literature, we presented low-power laser irradiation (LPLI) as a quick, simple, and harmless method to improve liver regeneration after major hepatectomies. This article highlights the current evidence about the effects of LPLI on liver regeneration, and also suggests laser therapy as an important tool for regenerative stimulation in clinical practice.

2.
Arch. endocrinol. metab. (Online) ; 61(6): 524-533, Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-887604

ABSTRACT

ABSTRACT Objective: Thus, the aim of this study was to compare if higher or smaller fibronectin type 3 domain-containing protein 5 (FNDC5)/irisin levels are associated with inflammatory and metabolic markers, caloric/macronutrient intake, physical fitness and type 2 diabetes mellitus (T2DM) risk in obese middle-aged men, and also to correlate all variables analyzed with FNDC5/irisin. Subjects and methods: On the basis of a cluster study, middle-aged obese men (IMC: 31.01 ± 1.64 kg/m2) were divided into groups of higher and smaller levels of FNDC5/irisin. The levels of leptin, resistin, adiponectin, tumor necrosis factor alpha (TNFα), interleukin 6 and 10 (IL6, IL10), lipopolysaccharide (LPS), glucose, insulin, glycated hemoglobin, insulin resistance and sensibility, lipid profile, risk of T2DM development, body composition, rest energy expenditure, caloric/macronutrient intake and physical fitness were measured. Results: The higher FNDC5/ irisin group presented improved insulin sensibility (homeostasis model assessment - sensibility (HOMA-S) (p = 0.01) and QUICKI index (p < 0.01)), insulin (p = 0.02) and triglyceride levels (p = 0.01), lower insulin resistance (homeostasis model assessment - insulin resistance (HOMA-IR) (p = 0.01), triglycerides/glucose (TYG index) (p = 0.02), neck circumference (p = 0.02), risk of T2DM development (p = 0.02), tendency to decrease serum resistin (p = 0.08) and significant lower LPS levels (p = 0.02). Inverse correlations between FNDC5/irisin and body weight (r −0.46, p = 0.04), neck circumference (r −0.51, p = 0.02), free fat mass (r −0.49, p = 0.02), triglycerides (r −0.43, p = 0.05) and risk of developing T2DM (r −0.61, p = 0.04) were observed. Conclusions: These results suggest that higher FNDC5/irisin levels in obese middle-aged men are related to a better metabolic profile and lower risk of T2DM development and serum LPS, a potential inducer of insulin resistance.


Subject(s)
Humans , Male , Adult , Middle Aged , Lipopolysaccharides/blood , Fibronectins/blood , Diabetes Mellitus, Type 2/etiology , Obesity/complications , Blood Pressure/physiology , Energy Intake/physiology , Biomarkers/blood , Cross-Sectional Studies , Risk Factors , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/blood , Exercise Test , Cardiorespiratory Fitness/physiology , Obesity/physiopathology , Obesity/blood
3.
Arch Endocrinol Metab ; 61(6): 524-533, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29412381

ABSTRACT

OBJECTIVE: Thus, the aim of this study was to compare if higher or smaller fibronectin type 3 domain-containing protein 5 (FNDC5)/irisin levels are associated with inflammatory and metabolic markers, caloric/macronutrient intake, physical fitness and type 2 diabetes mellitus (T2DM) risk in obese middle-aged men, and also to correlate all variables analyzed with FNDC5/irisin. SUBJECTS AND METHODS: On the basis of a cluster study, middle-aged obese men (IMC: 31.01 ± 1.64 kg/m2) were divided into groups of higher and smaller levels of FNDC5/irisin. The levels of leptin, resistin, adiponectin, tumor necrosis factor alpha (TNFα), interleukin 6 and 10 (IL6, IL10), lipopolysaccharide (LPS), glucose, insulin, glycated hemoglobin, insulin resistance and sensibility, lipid profile, risk of T2DM development, body composition, rest energy expenditure, caloric/macronutrient intake and physical fitness were measured. RESULTS: The higher FNDC5/ irisin group presented improved insulin sensibility (homeostasis model assessment - sensibility (HOMA-S) (p = 0.01) and QUICKI index (p < 0.01)), insulin (p = 0.02) and triglyceride levels (p = 0.01), lower insulin resistance (homeostasis model assessment - insulin resistance (HOMA-IR) (p = 0.01), triglycerides/glucose (TYG index) (p = 0.02), neck circumference (p = 0.02), risk of T2DM development (p = 0.02), tendency to decrease serum resistin (p = 0.08) and significant lower LPS levels (p = 0.02). Inverse correlations between FNDC5/irisin and body weight (r -0.46, p = 0.04), neck circumference (r -0.51, p = 0.02), free fat mass (r -0.49, p = 0.02), triglycerides (r -0.43, p = 0.05) and risk of developing T2DM (r -0.61, p = 0.04) were observed. CONCLUSIONS: These results suggest that higher FNDC5/irisin levels in obese middle-aged men are related to a better metabolic profile and lower risk of T2DM development and serum LPS, a potential inducer of insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Fibronectins/blood , Lipopolysaccharides/blood , Obesity/complications , Adult , Biomarkers/blood , Blood Pressure/physiology , Cardiorespiratory Fitness/physiology , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Energy Intake/physiology , Exercise Test , Humans , Male , Middle Aged , Obesity/blood , Obesity/physiopathology , Risk Factors
4.
Mol Cell Biochem ; 419(1-2): 93-101, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27372351

ABSTRACT

Parkinsonia aculeata L. (Caesalpiniaceae) is a traditional ethnomedicine and has been used for the empiric treatment of hyperglycemia, without scientific background. Mechanistic analyses at molecular level from the antioxidant mechanism observed by P. aculeata are required. Herein the effects of the treatment by hydroethanolic extract partitioned with ethyl acetate of P. aculeata aerial parts (HEPa/EtOAc) in mice fed a high-fat diet that share many obesity phenotypes with humans were evaluated. The animals were treated orally with HEPa/EtOAc (125 and 250 mg/kg/day) and pioglitazone (5 mg/kg/day), for 16 days. After the treatment, HEPa/EtOAc reduced fasting serum glucose and insulin levels, as well as homeostasis model assessment for insulin resistance. In addition, an improvement in glucose intolerance was also observed. Indeed, a reduction in the circulating levels of TNF-α and IL-6 was also observed. Furthermore, at molecular level, it was demonstrated that the HEPa/EtOAc treatment was able to improve these physiological parameters, through the activation of peroxisome proliferator-activated receptor γ (PPARγ) per si, as well as the enhancement of antioxidant mechanism by an increase in PPARγ/Cu(2+), Zn(2+)-superoxide dismutase (CuZn-SOD) axis expression in liver and adipose tissue. In sum, P. aculeata is effective to improve insulin resistance in a mouse model of obesity and this effect seems to involve the antioxidant and anti-inflammatory mechanisms through the increase in PPARγ/CuZn-SOD axis expression.


Subject(s)
Fabaceae/chemistry , Gene Expression Regulation/drug effects , Insulin Resistance , Obesity/drug therapy , Oxidative Stress/drug effects , PPAR gamma/biosynthesis , Plant Extracts/pharmacology , Superoxide Dismutase/biosynthesis , Animals , Diet/adverse effects , Disease Models, Animal , Humans , Male , Mice , Obesity/chemically induced , Obesity/metabolism , Obesity/pathology , Plant Extracts/chemistry
5.
J Ethnopharmacol ; 183: 95-102, 2016 May 13.
Article in English | MEDLINE | ID: mdl-26940900

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The search for natural agents that minimize obesity-associated disorders is receiving special attention. Parkinsonia aculeata L. (Caesalpineaceae) has long been used in Brazil as a hypoglycaemic herbal medicine, without any scientific basis. AIMS OF THE STUDY: In this context, we aimed to use molecular and physiological methods to study the effect of a hydroethanolic extract partitioned with ethyl acetate from the aerial parts of Parkinsonia aculeata (HEPa/EtOAc) on insulin resistance in a mouse model of diet-induced obesity (DIO). MATERIAL AND METHODS: Firstly, C57BL/6J mice were fed either with standard rodent chow diet or a high-fat diet (HFD) for 12 consecutive weeks. Then, the animals were treated with HEPa/EtOAc at two doses (125 and 250mg/kg/day) or metformin (200mg/kg/day) for 16 days. At the end of the experiment, body weight, fat pad weight, fasting serum glucose (FSG), insulin (FSI) and leptin were measured. Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) was also calculated. Glucose, insulin and pyruvate tolerance tests were performed. The expression and phosphorylation of IRß(tyr), Akt(ser473), AMPKα and PGC1α in liver, muscle and adipose tissue were determined by Western blot analyses. RESULTS: Herein we demonstrate for the first time an improvement in insulin resistance following HEPa/EtOAc administration in obese mice, as shown by increased glucose, insulin and pyruvate tolerance, as well as an improvement in FSG, FSI, HOMA-IR and circulating leptin levels, which together are in part due to enhancement of the insulin signaling pathway in its main target tissues. Surprisingly, the increase in activation of the AMPKα-PGC1-α axis by HEPa/EtOAc was similar to that produced by metformin treatment in the liver and muscle tissues. CONCLUSION: In conclusion, P. aculeata appears to be a source of therapeutic agent against obesity-related complications.


Subject(s)
Fabaceae/chemistry , Insulin Resistance/physiology , Insulin/metabolism , Mitochondria/drug effects , Plant Extracts/pharmacology , Signal Transduction/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Blood Glucose/drug effects , Body Weight/drug effects , Brazil , Diet, High-Fat/adverse effects , Dietary Fats/adverse effects , Fasting , Glucose Tolerance Test/methods , Leptin/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Obesity/metabolism , Plant Extracts/chemistry
6.
Int J Endocrinol ; 2014: 983453, 2014.
Article in English | MEDLINE | ID: mdl-25313308

ABSTRACT

Glucocorticoid (GC) therapies may adversely cause insulin resistance (IR) that lead to a compensatory hyperinsulinemia due to insulin hypersecretion. The increased ß-cell function is associated with increased insulin signaling that has the protein kinase B (AKT) substrate with 160 kDa (AS160) as an important downstream AKT effector. In muscle, both insulin and AMP-activated protein kinase (AMPK) signaling phosphorylate and inactivate AS160, which favors the glucose transporter (GLUT)-4 translocation to plasma membrane. Whether AS160 phosphorylation is modulated in islets from GC-treated subjects is unknown. For this, two animal models, Swiss mice and Wistar rats, were treated with dexamethasone (DEX) (1 mg/kg body weight) for 5 consecutive days. DEX treatment induced IR, hyperinsulinemia, and dyslipidemia in both species, but glucose intolerance and hyperglycemia only in rats. DEX treatment caused increased insulin secretion in response to glucose and augmented ß-cell mass in both species that were associated with increased islet content and increased phosphorylation of the AS160 protein. Protein AKT phosphorylation, but not AMPK phosphorylation, was found significantly enhanced in islets from DEX-treated animals. We conclude that the augmented ß-cell function developed in response to the GC-induced IR involves inhibition of the islet AS160 protein activity.

7.
Life Sci ; 95(1): 45-52, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24333277

ABSTRACT

AIMS: The search for natural agents that minimize obesity-associated disorders is receiving special attention. In this regard, the present study aimed to evaluate the prophylactic effect of Chlorella vulgaris (CV) on body weight, lipid profile, blood glucose and insulin signaling in liver, skeletal muscle and adipose tissue of diet-induced obese mice. MAIN METHODS: Balb/C mice were fed either with standard rodent chow diet or high-fat diet (HFD) and received concomitant treatment with CV for 12 consecutive weeks. Triglyceride, free fatty acid, total cholesterol and fractions of cholesterol were measured using commercial assay. Insulin and leptin levels were determined by enzyme-linked immunosorbent assay (ELISA). Insulin and glucose tolerance tests were performed. The expression and phosphorylation of IRß, IRS-1 and Akt were determined by Western blot analyses. KEY FINDINGS: Herein we demonstrate for the first time in the literature that prevention by CV of high-fat diet-induced insulin resistance in obese mice, as shown by increased glucose and insulin tolerance, is in part due to the improvement in the insulin signaling pathway at its main target tissues, by increasing the phosphorylation levels of proteins such as IR, IRS-1 and Akt. In parallel, the lower phosphorylation levels of IRS-1(ser307) were observed in obese mice. We also found that CV administration prevents high-fat diet-induced dyslipidemia by reducing triglyceride, cholesterol and free fatty acid levels. SIGNIFICANCE: We propose that the modulatory effect of CV treatment preventing the deleterious effects induced by high-fat diet is a good indicator for its use as a prophylactic-therapeutic agent against obesity-related complications.


Subject(s)
Chlorella vulgaris/chemistry , Insulin Resistance , Insulin/metabolism , Obesity/drug therapy , Plant Extracts/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Blood Glucose/drug effects , Body Weight/drug effects , Diet, High-Fat/adverse effects , Dyslipidemias/etiology , Dyslipidemias/prevention & control , Glucose Tolerance Test , Leptin/metabolism , Lipids/blood , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Obesity/complications , Phosphorylation/drug effects , Signal Transduction/drug effects
8.
J Physiol Biochem ; 67(3): 371-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21437730

ABSTRACT

Currently, there are no reports in the literature demonstrating any animal model that ingests one of the fattiest animal food source, the bovine brain. We hypothesized that a high-fat diet (HFD), based on dried bovine brain, could be used to develop an animal model possessing a spectrum of insulin resistance-related features. The HFD was formulated with 40% dried bovine brain plus 16.4% butter fat, prepared in-house. Furthermore, the diet contained 52% calories as fat and 73% of total fatty acids were saturated. Swiss mice weighing about 40 g were assigned to two dietary groups (n=6/group), one group received a standard chow diet and the other was given HFD for 3 months. The body weight and biochemical parameters of the animals were measured initially and at monthly intervals until the end of the experiment. Animals fed on a HFD showed a significant increase in the body and adipose tissue weight, serum total cholesterol and triglyceride levels, when compared with mice fed on the control diet. Additionally, the HFD group showed higher circulating levels of liver transaminases, such as alanine aminotransferase and aspartate aminotransferase, compared with the control group. Finally, to illustrate the usefulness of this model, we report that the HFD induced mild hyperglycemia, fasting hyperinsulinemia, and increased the homeostasis model of assessment (HOMA-IR), in comparison with the control group. In conclusion, our results show that HFD, based on dried bovine brain, causes insulin resistance-related metabolic disturbances. Thus, this may be a suitable model to study disturbances in energy metabolism and their consequences.


Subject(s)
Brain , Dietary Fats/administration & dosage , Dyslipidemias/etiology , Insulin Resistance , Adipose Tissue/pathology , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Blood Glucose/metabolism , Body Weight , Cattle , Desiccation , Disease Models, Animal , Energy Intake , Insulin/blood , Lipids/blood , Male , Mice , Organ Size
9.
Article in English | MEDLINE | ID: mdl-20953386

ABSTRACT

This paper reports the characterization of the antidiabetic role of a hydroethanolic extract from Parkinsonia aerial parts (HEPA), in normal and alloxan-induced diabetic rats, treated with HEPA (125 and 250 mg/kg; p.o.). Oral glucose tolerance test, acute oral toxicity test and preliminary phytochemical analyses were performed. The diabetic rats treated with HEPA showed a significant reduction in serum and urinary glucose, urinary urea and triglyceride levels, as compared to the diabetic untreated group. However, in the normal treated groups, a significant reduction was found only in serum triglyceride levels. In all treated diabetic groups, an improvement in hepatic glycogen was observed, as well as a decrease in liquid intake and urinary volume, and an enhancement in the weight of skeletal muscles (soleus and extensor digitorum longus), kidneys and epididymal adipose tissue. Nevertheless, body and liver weights were ameliorated only in the diabetic group treated with HEPA (250 mg/kg). Moreover, oral glucose tolerance was higher in animals treated with HEPA, while results also showed that HEPA could be considered toxicologically safe. Phytochemical analysis revealed the presence of tanins, flavonoids and steroids in HEPA. In conclusion, P. aculeata presents an antidiabetic activity and other beneficial effects that ameliorate diabetes and associated complications.

SELECTION OF CITATIONS
SEARCH DETAIL
...