ABSTRACT
Genetic variability within the same fish species could confer soybean meal (SBM) tolerance in some individuals, thus favoring growth. This study investigates the single-nucleotide polymorphisms (SNPs) in differentially expressed genes (DEGs) favoring SBM tolerance in higher-growth zebrafish (Danio rerio). In a previous work, nineteen families of zebrafish were fed a fish meal diet (100FM control diet) or SBM-based diets supplemented with saponin (50SBM + 2SPN-experimental diet), from juvenile to adult stages. Individuals were selected from families with a genotype-by-environment interaction higher (170 ± 18 mg) or lower (76 ± 10 mg) weight gain on 50SBM + 2SPN in relation to 100FM. Intestinal transcriptomic analysis using RNA-seq revealed six hundred and sixty-five differentially expressed genes in higher-growth fish fed 50SBM + 2SPN diet. In this work, using these results, 47 SNPs in DEGs were selected. These SNPs were genotyped by Sequenom in 340 zebrafish that were fed with a 50SBM + 2SPN diet or with 100FM diet. Marker-trait analysis revealed 4 SNPs associated with growth in 3 immunity-related genes (aif1l, arid3c, and cst14b.2) in response to the 50SBM + 2SPN diet (p-value < 0.05). Two SNPs belonging to aif1l y arid3c produce a positive (+19 mg) and negative (-26 mg) effect on fish growth, respectively. These SNPs can be used as markers to improve the early selection of tolerant fish to SBM diet or other plant-based diets. These genes can be used as biomarkers to identify SNPs in commercial fish, thus contributing to the aquaculture sustainability.
Subject(s)
Animal Feed , Glycine max , Polymorphism, Single Nucleotide , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/growth & development , Glycine max/genetics , Diet/veterinary , Genotype , Gene Expression Profiling , TranscriptomeABSTRACT
Hybrid zones among mussel species have been extensively studied in the northern hemisphere. In South America, it has only recently become possible to study the natural hybrid zones, due to the clarification of the taxonomy of native mussels of the Mytilus genus. Analysing 54 SNP markers, we show the genetic species composition and admixture in the hybrid zone between M. chilensis and M. platensis in the southern end of South America. Bayesian, non-Bayesian clustering and re-assignment algorithms showed that the natural hybrid zone between M. chilensis and M. platensis in the Strait of Magellan, Isla Grande de Tierra del Fuego and the Falkland Islands shows clinal architecture. The hybrid zone can be divided into three different areas: the first one is on the Atlantic coast where only pure M. platensis and hybrid were found. In the second one, inside the Strait of Magellan, pure individuals of both species and mussels with variable degrees of hybridisation coexist. In the last area at the Strait in front of Punta Arenas City, fjords on the Isla Grande de Tierra del Fuego, and at the Beagle Channel, only M. chilensis and a low number of hybrids were found. According to the proportion of hybrids, bays with protected conditions away from strong currents would give better conditions for hybridisation. We do not find evidence of any other mussel species such as M. edulis, M. galloprovincialis, M. planulatus or M. trossulus in the zone.
Subject(s)
Mytilus , Humans , Animals , Dogs , Mytilus/genetics , Falkland Islands , Bayes Theorem , Genotype , South AmericaABSTRACT
Seafood international trade has increased the labeling requirements in standards and regulations to include product information that enable traders and consumers to make informed choices. The European Union (EU) Regulation No. 1379/2013 imposes the declaration of an official commercial designation and scientific names for all the fishery and aquaculture products to be offered for sale to the final consumers. DNA analyses are used to enforce this regulation and to test authenticity in processed foods. We compared the performance of two mono-locus approaches for species identification (SI) in 61 Mytilus mussels: the high-resolution melting analysis of the polyphenolic adhesive protein gene and the partial sequencing of the histone H1C gene. The H1C sequences were analyzed with five different methods. Both approaches show discrepancies in the identification of putative hybrids (0.0 < κ < 0.687 and 0.0 < MCC < 0.724). Excluding putative hybrids, methods show substantial to perfect agreement (0.772 < κ < 1.0 and 0.783 < MCC < 1.0). This study highlights the need to use standardized molecular tools, as well as to use multi-locus methods for SI of Mytilus mussels in testing laboratories.
ABSTRACT
BACKGROUND: Approximately 30% of individuals with schizophrenia (SZ) are resistant to conventional antipsychotic drug therapy (AP). Of these, one-third are also resistant to the second-line treatment, clozapine. Treatment resistance and refractoriness are associated with increased morbidity and disability, making timely detection of these issues critical. Variability in treatment responsiveness is partly genetic, but research has yet to identify variants suitable for personalizing antipsychotic prescriptions. METHODS: We evaluated potential associations between response to AP and candidate gene variants previously linked to SZ or treatment response. Two groups of patients with SZ were evaluated: one receiving clozapine (n = 135) and the other receiving another second-generation AP (n = 61). Single-nucleotide polymorphisms (SNPs) in the genes OXT, OXTR, CNR1, DDC, and DRD2 were analyzed. RESULTS: Several SNPs were associated with response vs. resistance to AP or clozapine. CONCLUSIONS: This is the first study of its kind, to our knowledge, in our admixed Chilean population to address the complete treatment response spectrum. We identified SNPs predictive of treatment-resistant SZ in the genes OXT, CNR1, DDC, and DRD2.
Subject(s)
Antipsychotic Agents , Clozapine , Schizophrenia , Humans , Antipsychotic Agents/therapeutic use , Clozapine/therapeutic use , Polymorphism, Single Nucleotide/genetics , Schizophrenia/diagnosis , Schizophrenia/drug therapy , Schizophrenia/geneticsABSTRACT
DNA-based methods using informative markers such as single nucleotide polymorphism (SNPs) are suitable for reliable species identification (SI) needed to enforce compliance with seafood labelling regulations (EU No.1379/2013). We developed a panel of 10 highly informative SNPs to be genotyped by PCR-High resolution melting (HRM) for SI in the Mytilus genus through in silico and in vitro stages. Its fitness for purpose and concordance were assessed by an internal validation process and by the transference to a second laboratory. The method was applicable to identify M. chilensis, M. edulis, M. galloprovincialis and M. trossulus mussels, fresh, frozen and canned with brine, oil and scallop sauce, but not in preserves containing acetic acid (wine vinegar) and tomato sauce. False-positive and negative rates were zero. Sensitivity, expressed as limit of detection (LOD), ranged between 5 and 8 ng/µL. The method was robust against small variations in DNA quality, annealing time and temperature, primer concentration, reaction volume and HRM kit. Reference materials and 220 samples were tested in an inter-laboratory assay obtaining an "almost perfect agreement" (κ = 0.925, p < 0.001). In conclusion, the method was suitable for the intended use and to be applied in the seafood industry.
ABSTRACT
The molecular mechanisms underlying fish tolerance to soybean meal (SBM) remain unclear. Identifying these mechanisms would be beneficial, as this trait favors growth. Two fish replicates from 19 experimental families were fed fishmeal-(100FM) or SBM-based diets supplemented with saponin (50SBM + 2SPN) from juvenile to adult stages. Individuals were selected from families with a genotype-by-environment interaction higher (HG-50SBM + 2SPN, 170 ± 18 mg) or lower (LG-50SBM + 2SPN, 76 ± 10 mg) weight gain on 50SBM + 2SPN for intestinal transcriptomic analysis. A histological evaluation confirmed middle intestinal inflammation in the LG- vs. HG-50SBM + 2SPN group. Enrichment analysis of 665 differentially expressed genes (DEGs) identified pathways associated with immunity and lipid metabolism. Genes linked to intestinal immunity were downregulated in HG fish (mpx, cxcr3.2, cftr, irg1l, itln2, sgk1, nup61l, il22), likely dampening inflammatory responses. Conversely, genes involved in retinol signaling were upregulated (rbp4, stra6, nr2f5), potentially favoring growth by suppressing insulin responses. Genes associated with lipid metabolism were upregulated, including key components of the SREBP (mbtps1, elov5l, elov6l) and cholesterol catabolism (cyp46a1), as well as the downregulation of cyp7a1. These results strongly suggest that transcriptomic changes in lipid metabolism mediate SBM tolerance. Genotypic variations in DEGs may become biomarkers for improving early selection of fish tolerant to SMB or others plant-based diets.
Subject(s)
Immunity, Innate , Intestinal Mucosa/metabolism , Lipid Metabolism , Soybean Proteins/immunology , Transcriptome , Zebrafish Proteins/genetics , Animals , Intestinal Mucosa/immunology , Signal Transduction , Zebrafish , Zebrafish Proteins/metabolismABSTRACT
The yeast Saccharomyces cerevisiae is the main species responsible for the process that involves the transformation of grape must into wine, with the initial nitrogen in the grape must being vital for it. One of the main problems in the wine industry is the deficiency of nitrogen sources in the grape must, leading to stuck or sluggish fermentations, and generating economic losses. In this scenario, an alternative is the isolation or generation of yeast strains with low nitrogen requirements for fermentation. In the present study, we carry out a genetic improvement program using as a base population a group of 70 strains isolated from winemaking environments mainly in Chile and Argentina (F0), making from it a first and second filial generation (F1 and F2, respectively) based in different families and hybrids. It was found that the trait under study has a high heritability, obtaining in the F2 population strains that consume a minor proportion of the nitrogen sources present in the must. Among these improved strains, strain "686" specially showed a marked drop in the nitrogen consumption, without losing fermentative performance, in synthetic grape must at laboratory level. When using this improved strain to produce wine from a natural grape must (supplemented and non-supplemented with ammonium) at pilot scale under wine cellar conditions, a similar fermentative capacity was obtained between this strain and a widely used commercial strain (EC1118). However, when fermented in a non-supplemented must, improved strain "686" showed the presence of a marked floral aroma absent for EC1118 strain, this difference being probably a direct consequence of its different pattern in amino acid consumption. The combination of the capacity of improved strain "686" to ferment without nitrogen addition and produce floral aromas may be of commercial interest for the wine industry.
ABSTRACT
Mytilus mussels have been the object of much research given their sentinel role in coastal ecosystems and significant value as an aquaculture resource appreciated for both, its flavour and nutritional content. Some of the most-studied Mytilus species are M. edulis, M. galloprovincialis, M. chilensis and M. trossulus. As species identification based on morphological characteristics of Mytilus specimens is difficult, molecular markers are often used. Single-locus markers can give conflicting results when used independently; not all markers differentiate among all species, and the markers target genomic regions with different evolutionary histories. We evaluated the concordance between the PCR-RFLP markers most commonly-used for species identification in mussels within the Mytilus genus (Me15-16, ITS, mac-1, 16S rRNA and COI) when used alone (mono-locus approach) or together (multi-locus approach). In this study, multi-locus strategy outperformed the mono-locus methods, clearly identifying all four species and also showed similar specimen identification performance than a 49 SNPs panel. We hope that these findings will contribute to a better understanding of DNA marker-based analysis of Mytilus taxa. These results support the use of a multi-locus approach when studying this important marine resource, including research on food quality and safety, sustainable production and conservation.
Subject(s)
Genetic Loci , Mytilus/genetics , Animals , Cell Nucleus/genetics , Electron Transport Complex IV/genetics , Genetic Markers , Geography , Mitochondria/genetics , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Principal Component Analysis , Protein Subunits/genetics , RNA, Ribosomal, 16S/genetics , Species SpecificityABSTRACT
Chilean mussel populations have been thought to be panmictic with limited genetic structure. Genotyping-by-sequencing approaches have enabled investigation of genomewide variation that may better distinguish populations that have evolved in different environments. We investigated neutral and adaptive genetic variation in Mytilus from six locations in southern Chile with 1240 SNPs obtained with RAD-seq. Differentiation among locations with 891 neutral SNPs was low (FST = 0.005). Higher differentiation was obtained with a panel of 58 putative outlier SNPs (FST = 0.114) indicating the potential for local adaptation. This panel identified clusters of genetically related individuals and demonstrated that much of the differentiation (~92%) could be attributed to the three major regions and environments: extreme conditions in Patagonia, inner bay influenced by aquaculture (Reloncaví), and outer bay (Chiloé Island). Patagonia samples were most distinct, but additional analysis carried out excluding this collection also revealed adaptive divergence between inner and outer bay samples. The four locations within Reloncaví area were most similar with all panels of markers, likely due to similar environments, high gene flow by aquaculture practices, and low geographical distance. Our results and the SNP markers developed will be a powerful tool supporting management and programs of this harvested species.
ABSTRACT
INTRODUCTION: in relation to the student population, their class schedules, hours of study, budget shortages, among others, do not allow them to have good eating habits and sedentary ago. Within this context are the sports teams, which must deal with the above. OBJECTIVE: knowing the nutritional status of a group of college basketball players (BU) by anthropometric and biochemical parameters. METHODS: the research provides a non-experimental, descriptive, transversal, with a quantitative approach The sample was selected on a non-probabilistic approach. which included 12 players design. Anthropometric parameters for body mass index (BMI), somatotype and body composition was assessed. For biochemical glucose, triglycerides and cholesterol. RESULTS: have a BMI of 24.6 (kg/m2), are classified as endomesomorfas (5,5-4,3-1,2) have a fat mass 39.9% and 37.8% of muscle mass, glucose values are 68.7 (mg/dl), triglycerides 128 (mg/dl) and 189 cholesterol (mg/dl). CONCLUSION: the BU have normal values for BMI and biochemical parameters, but dig deeper greater amount of adipose tissue is found as reported by body composition and somatotype, a situation that could be related to poor eating habits, however is required further study to reach a categorical conclusion.
Introducción: en relación a la población universitaria, sus horarios de clases, horas de estudio, escasez de presupuesto, entre otras, no les permiten tener buenos hábitos alimentarios y los hace ser sedentarios. Dentro de este contexto se encuentran las selecciones deportivas, las cuales deben lidiar con lo antes mencionado. Objetivo: conocer el estado nutricional de un grupo de basquetbolistas universitarias (BU) mediante parámetros antropométricos y bioquímicos. Métodos: la investigación contempla un diseño no experimental, descriptivo, transversal, con un enfoque cuantitativo. La muestra fue seleccionada bajo un criterio no probabilístico, que incluyó a 12 jugadoras. Para los parámetros antropométricos se valoró el índice de masa corporal (IMC), el somatotipo y la composición corporal. Para los bioquímicos se valoró la glucosa, los triglicéridos y el colesterol. Resultados: las que presentan un IMC de 24,6 (kg/m2) se clasifican como endomesomorfas (5,5-4,3-1,2) y tienen un 39,9% de masa adiposa y un 37,8% de masa muscular; los valores de glucosa son 68,7 (mg/dl), triglicéridos 128 (mg/dl) y colesterol 189 (mg/dl). Conclusión: las BU poseen valores normales para el IMC y los parámetros bioquímicos, pero al indagar más profundamente se encuentra mayor cantidad de tejido adiposo, según lo reportado por la composición corporal y el somatotipo, situación que podría estar relacionada con malos hábitos alimentarios; no obstante se requiere un mayor estudio para llegar a una conclusión más tajante.
Subject(s)
Basketball/physiology , Nutritional Status , Adolescent , Anthropometry , Blood Glucose/metabolism , Body Composition , Body Mass Index , Cholesterol/blood , Female , Humans , Male , Somatotypes , Students , Triglycerides/blood , Universities , Young AdultABSTRACT
In spite of potentially being an important source of rhizobial diversity and a key determinant of common bean productivity, there is a paucity of data on Rhizobium genetic variation and species composition in the important bean producing area of Chile and only one species has been documented (Rhizobium leguminosarum). In this study, 240 Rhizobium isolates from Torcaza bean (Phaseolus vulgaris L.) nodules established in the highest bean producing area in Chile (33°34'S-70°38'W and 37°36'S-71°47'W) were characterized by PCR-RFLP markers for nodC gene, revealing eight banding patterns with the polymorphic enzyme Hinf I. The locality of San Agustín de Aurora in Central Chile (35°32'S-71°29'W) had the highest level of diversity. Isolates were classified by species using PCR-RFLP markers for 16S rDNA gene and were confirmed by sequencing an internal fragment of the 16S rDNA gene. The results confirmed the presence of R. leguminosarum and three other species of rhizobia nodulating beans in South Central Chile (R. etli, R. tropici and R. leucaenae). R. tropici and R. leucaenae showed the least genetic variation and were most commonly identified in acid soils, while R. etli was the most common species in slightly acidic to moderately alkaline soils, with higher levels of organic matter content. R. leguminosarum was identified in almost all soils, was the most genetically diverse, and was the most common, being documented in soils with pH that ranged between 5.3 and 8.2, and with organic matter content between 2.1 and 4 %.
Subject(s)
Genetic Variation , Phaseolus/microbiology , Rhizobium/genetics , Root Nodules, Plant/microbiology , Soil Microbiology , Bacterial Proteins/genetics , Chile , Climate , Hydrogen-Ion Concentration , N-Acetylglucosaminyltransferases/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil/chemistry , SymbiosisABSTRACT
The main objective of this study was to examine the effects of a plant protein- vs. fishmeal-based diet on growth response in a population of 24 families, as well as expression of growth-related genes in the muscle of adult zebrafish (Danio rerio). Each family was split to create two fish populations with similar genetic backgrounds, and the fish were fed either fishmeal (FM diet) or plant protein (PP diet) as the unique protein source in their diets from 35 to 98 days postfertilization (dpf). To understand the effect of the PP diet on gene expression, individuals from three families, representative of the mean weight in both populations, were selected. To understand the effect of familiar variation on gene expression, the same families were evaluated separately. At 98 dpf, growth-related genes Igf1a, Igf2a, mTOR, Pld1a, Mrf4, Myod, Myogenin, and Myostatin1b were evaluated. In males, Myogenin, Mrf4, and Igf2a showed changes attributable to the PP diet. In females, the effect of the PP diet did not modulate the expression in any of the eight genes studied. The effect of familiar variation on gene expression was observed among families. This study shows that PP diet and family variation have effects on gene expression in fish muscle.
Subject(s)
Dietary Proteins/administration & dosage , Gene Expression Regulation , Muscle, Skeletal/metabolism , Zebrafish Proteins/genetics , Zebrafish/physiology , Animal Feed/analysis , Animals , Female , Gene Expression Profiling , Male , Muscle, Skeletal/drug effects , Polymerase Chain Reaction , Random Allocation , Sex Characteristics , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish Proteins/metabolismABSTRACT
This study compares the gonadosomatic index (GSI), oocyte growth (OG), gonadal histology, and plasma level concentrations of sex hormones (estradiol-17ß (E2) and vitellogenin (V)) of twice-spawning (T-SP) and once-spawning (O-SP) females of rainbow trout throughout the additional and the normal reproductive cycle, respectively. In T-SP, the GSI values rapidly increase from May to November, in contrast to O-SP, which showed low and constant GSI values (1.19 to 14.5 and 1.19 to 0.63, resp.). T-SP exhibited a marked increase of OG in the same period, reaching a maximum diameter of 4,900 ± 141.42 µm, in contrast to O-SP, which presented a slow OG. The gonadal histology of T-SP agreed with the general pattern of ovogenesis observed for O-SP (vitellogenesis, ovulation, and recrudescence); however, this process was nonsynchronous between the two breeder groups. Plasma steroid levels showed significant variation during oogenesis, which agreed with the GSI, OG, and gonadal histology patterns. The level of E2 increased to a maximum value of 26.2 ng/mL and 36.0 ng/mL in O-SP and T-SP, respectively, one or two months before the spawning event where vitellogenesis was fully active. The V concentrations followed a pattern similar to those of E2.
Subject(s)
Gonadal Steroid Hormones/blood , Oncorhynchus mykiss/physiology , Oogenesis/physiology , Ovulation/physiology , Sexual Behavior, Animal/physiology , Steroids/blood , Animals , FemaleABSTRACT
Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map.
ABSTRACT
This study assessed the relative contributions of host genetics and diet in shaping the gut microbiota of rainbow trout. Full sibling fish from four unrelated families, each consisting of individuals derived from the mating of one male and one female belonging to a breeding program, were fed diets containing either vegetable proteins or vegetable oils for two months in comparison to a control diet consisting of only fish protein and fish oil. Two parallel approaches were applied on the same samples: transcriptionally active bacterial populations were examined based on RNA analysis and were compared with bacterial populations obtained from DNA analysis. Comparison of temporal temperature gradient gel electrophoresis (TTGE) profiles from DNA and RNA showed important differences, indicating that active bacterial populations were better described by RNA analysis. Results showed that some bacterial groups were significantly (P<0.05) associated with specific families, indicating that microbiota composition may be influenced by the host. In addition, the effect of diet on microbiota composition was dependent on the trout family.
Subject(s)
Denaturing Gradient Gel Electrophoresis/methods , Intestines/microbiology , RNA, Ribosomal, 16S/genetics , Animal Feed , Animals , DNA, Bacterial/metabolism , Ecology , Enteritis/microbiology , Metagenome , Microscopy, Fluorescence/methods , Oncorhynchus mykiss , Phylogeny , Plant Oils/metabolism , Polymerase Chain Reaction/methods , RNA/metabolism , Vegetables/metabolismABSTRACT
The rainbow trout is a salmonid fish that occasionally exhibits broodstocks with biannual spawning behavior, a phenomenon known as a double annual reproductive cycle (DARC). Spawning time quantitative trait loci (SPT-QTLs) affect the time of the year that female rainbow trout spawn and may influence expression of the DARC trait. In this study, microsatellite markers linked and unlinked to SPT-QTLs were genotyped to investigate the underlying genetics of this trait. SPT-QTLs influenced the DARC trait since in two case-control comparisons three linked markers (OmyFGT12TUF, One3ASC and One19ASC) had significant levels of allelic frequency differentiation and marker-character association. Furthermore, alleles of One3ASC and One19ASC had significantly higher frequencies in populations that carried the DARC trait.
ABSTRACT
The rainbow trout is a salmonid fish that occasionally exhibits broodstocks with biannual spawning behavior, a phenomenon known as a double annual reproductive cycle (DARC). Spawning time quantitative trait loci (SPT-QTLs) affect the time of the year that female rainbow trout spawn and may influence expression of the DARC trait. In this study, microsatellite markers linked and unlinked to SPT-QTLs were genotyped to investigate the underlying genetics of this trait. SPT-QTLs influenced the DARC trait since in two case-control comparisons three linked markers (OmyFGT12TUF, One3ASC and One19ASC) had significant levels of allelic frequency differentiation and marker-character association. Furthermore, alleles of One3ASC and One19ASC had significantly higher frequencies in populations that carried the DARC trait.