Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Elife ; 132024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240197

ABSTRACT

Small-molecule drug design hinges on obtaining co-crystallized ligand-protein structures. Despite AlphaFold2's strides in protein native structure prediction, its focus on apo structures overlooks ligands and associated holo structures. Moreover, designing selective drugs often benefits from the targeting of diverse metastable conformations. Therefore, direct application of AlphaFold2 models in virtual screening and drug discovery remains tentative. Here, we demonstrate an AlphaFold2-based framework combined with all-atom enhanced sampling molecular dynamics and Induced Fit docking, named AF2RAVE-Glide, to conduct computational model-based small-molecule binding of metastable protein kinase conformations, initiated from protein sequences. We demonstrate the AF2RAVE-Glide workflow on three different mammalian protein kinases and their type I and II inhibitors, with special emphasis on binding of known type II kinase inhibitors which target the metastable classical DFG-out state. These states are not easy to sample from AlphaFold2. Here, we demonstrate how with AF2RAVE these metastable conformations can be sampled for different kinases with high enough accuracy to enable subsequent docking of known type II kinase inhibitors with more than 50% success rates across docking calculations. We believe the protocol should be deployable for other kinases and more proteins generally.


Subject(s)
Drug Discovery , Protein Conformation , Drug Discovery/methods , Molecular Docking Simulation , Protein Binding , Molecular Dynamics Simulation , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Ligands , Protein Kinases/chemistry , Protein Kinases/metabolism
2.
ArXiv ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38659642

ABSTRACT

Small molecule drug design hinges on obtaining co-crystallized ligand-protein structures. Despite AlphaFold2's strides in protein native structure prediction, its focus on apo structures overlooks ligands and associated holo structures. Moreover, designing selective drugs often benefits from the targeting of diverse metastable conformations. Therefore, direct application of AlphaFold2 models in virtual screening and drug discovery remains tentative. Here, we demonstrate an AlphaFold2 based framework combined with all-atom enhanced sampling molecular dynamics and induced fit docking, named AF2RAVE-Glide, to conduct computational model based small molecule binding of metastable protein kinase conformations, initiated from protein sequences. We demonstrate the AF2RAVE-Glide workflow on three different protein kinases and their type I and II inhibitors, with special emphasis on binding of known type II kinase inhibitors which target the metastable classical DFG-out state. These states are not easy to sample from AlphaFold2. Here we demonstrate how with AF2RAVE these metastable conformations can be sampled for different kinases with high enough accuracy to enable subsequent docking of known type II kinase inhibitors with more than 50% success rates across docking calculations. We believe the protocol should be deployable for other kinases and more proteins generally.

3.
J Chem Inf Model ; 64(7): 2789-2797, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-37981824

ABSTRACT

Kinases compose one of the largest fractions of the human proteome, and their misfunction is implicated in many diseases, in particular, cancers. The ubiquitousness and structural similarities of kinases make specific and effective drug design difficult. In particular, conformational variability due to the evolutionarily conserved Asp-Phe-Gly (DFG) motif adopting in and out conformations and the relative stabilities thereof are key in structure-based drug design for ATP competitive drugs. These relative conformational stabilities are extremely sensitive to small changes in sequence and provide an important problem for sampling method development. Since the invention of AlphaFold2, the world of structure-based drug design has noticeably changed. In spite of it being limited to crystal-like structure prediction, several methods have also leveraged its underlying architecture to improve dynamics and enhanced sampling of conformational ensembles, including AlphaFold2-RAVE. Here, we extend AlphaFold2-RAVE and apply it to a set of kinases: the wild type DDR1 sequence and three mutants with single point mutations that are known to behave drastically differently. We show that AlphaFold2-RAVE is able to efficiently recover the changes in relative stability using transferable learned order parameters and potentials, thereby supplementing AlphaFold2 as a tool for exploration of Boltzmann-weighted protein conformations (Meller, A.; Bhakat, S.; Solieva, S.; Bowman, G. R. Accelerating Cryptic Pocket Discovery Using AlphaFold. J. Chem. Theory Comput. 2023, 19, 4355-4363).


Subject(s)
Oligopeptides , Protein Kinase Inhibitors , Humans , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Conformation , Oligopeptides/chemistry
4.
ArXiv ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37731662

ABSTRACT

Kinases compose one of the largest fractions of the human proteome, and their misfunction is implicated in many diseases, in particular cancers. The ubiquitousness and structural similarities of kinases makes specific and effective drug design difficult. In particular, conformational variability due to the evolutionarily conserved DFG motif adopting in and out conformations and the relative stabilities thereof are key in structure-based drug design for ATP competitive drugs. These relative conformational stabilities are extremely sensitive to small changes in sequence, and provide an important problem for sampling method development. Since the invention of AlphaFold2, the world of structure-based drug design has noticably changed. In spite of it being limited to crystal-like structure prediction, several methods have also leveraged its underlying architecture to improve dynamics and enhanced sampling of conformational ensembles, including AlphaFold2-RAVE. Here, we extend AlphaFold2-RAVE and apply it to a set of kinases: the wild type DDR1 sequence and three mutants with single point mutations that are known to behave drastically differently. We show that AlphaFold2-RAVE is able to efficiently recover the changes in relative stability using transferable learnt order parameters and potentials, thereby supplementing AlphaFold2 as a tool for exploration of Boltzmann-weighted protein conformations.

5.
J Chem Theory Comput ; 19(14): 4351-4354, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37171364

ABSTRACT

While AlphaFold2 is rapidly being adopted as a new standard in protein structure predictions, it is limited to single structures. This can be insufficient for the inherently dynamic world of biomolecules. In this Letter, we propose AlphaFold2-RAVE, an efficient protocol for obtaining Boltzmann-ranked ensembles from sequence. The method uses structural outputs from AlphaFold2 as initializations for artificial intelligence-augmented molecular dynamics. We release the method as an open-source code and demonstrate results on different proteins.

6.
J Mol Biol ; 433(24): 167325, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34695380

ABSTRACT

Single domain proteins fold via diverse mechanisms emphasizing the intricate relationship between energetics and structure, which is a direct consequence of functional constraints and demands imposed at the level of sequence. On the other hand, elucidating the interplay between folding mechanisms and function is challenging in large proteins, given the inherent shortcomings in identifying metastable states experimentally and the sampling limitations associated with computational methods. Here, we show that free energy profiles and surfaces of large systems (>150 residues), as predicted by a statistical mechanical model, display a wide array of folding mechanisms with ubiquitous folding intermediates and heterogeneous native ensembles. Importantly, residues around the ligand binding or enzyme active site display a larger tendency to partially unfold and this manifests as intermediates or excited states along the folding coordinate in ligand binding domains, transcription repressors, and representative enzymes from all the six classes, including the SARS-CoV-2 receptor binding domain (RBD) of the spike protein and the protease Mpro. It thus appears that it is relatively easier to distill the imprints of function on the folding landscape of larger proteins as opposed to smaller systems. We discuss how an understanding of energetic-entropic features in ordered proteins can pinpoint specific avenues through which folding mechanisms, populations of partially structured states and function can be engineered.


Subject(s)
Enzymes/chemistry , Enzymes/metabolism , Models, Molecular , Protein Conformation , Protein Folding , Humans , Protein Binding , Protein Domains , Thermodynamics
8.
Curr Res Struct Biol ; 1: 6-12, 2019 Nov.
Article in English | MEDLINE | ID: mdl-34235463

ABSTRACT

Statistical mechanical models that afford an intermediate resolution between macroscopic chemical models and all-atom simulations have been successful in capturing folding behaviors of many small single-domain proteins. However, the applicability of one such successful approach, the Wako-Saitô-Muñoz-Eaton (WSME) model, is limited by the size of the protein as the number of conformations grows exponentially with protein length. In this work, we surmount this size limitation by introducing a novel approximation that treats stretches of 3 or 4 residues as blocks, thus reducing the phase space by nearly three orders of magnitude. The performance of the 'bWSME' model is validated by comparing the predictions for a globular enzyme (RNase H) and a repeat protein (IκBα), against experimental observables and the model without block approximation. Finally, as a proof of concept, we predict the free-energy surface of the 370-residue, multi-domain maltose binding protein and identify an intermediate in good agreement with single-molecule force-spectroscopy measurements. The bWSME model can thus be employed as a quantitative predictive tool to explore the conformational landscapes of large proteins, extract the structural features of putative intermediates, identify parallel folding paths, and thus aid in the interpretation of both ensemble and single-molecule experiments.

SELECTION OF CITATIONS
SEARCH DETAIL